Extensions 1→N→G→Q→1 with N=Dic30 and Q=C4

Direct product G=N×Q with N=Dic30 and Q=C4
dρLabelID
C4×Dic30480C4xDic30480,833

Semidirect products G=N:Q with N=Dic30 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic301C4 = Dic6⋊F5φ: C4/C1C4 ⊆ Out Dic301208-Dic30:1C4480,229
Dic302C4 = D124F5φ: C4/C1C4 ⊆ Out Dic301208-Dic30:2C4480,231
Dic303C4 = Dic65F5φ: C4/C1C4 ⊆ Out Dic301208-Dic30:3C4480,984
Dic304C4 = Dic30⋊C4φ: C4/C1C4 ⊆ Out Dic301208-Dic30:4C4480,230
Dic305C4 = D122F5φ: C4/C1C4 ⊆ Out Dic301208-Dic30:5C4480,232
Dic306C4 = F5×Dic6φ: C4/C1C4 ⊆ Out Dic301208-Dic30:6C4480,982
Dic307C4 = D607C4φ: C4/C2C2 ⊆ Out Dic301202Dic30:7C4480,165
Dic308C4 = Dic308C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:8C4480,176
Dic309C4 = Dic309C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:9C4480,170
Dic3010C4 = D6010C4φ: C4/C2C2 ⊆ Out Dic301204Dic30:10C4480,185
Dic3011C4 = Dic1510Q8φ: C4/C2C2 ⊆ Out Dic30480Dic30:11C4480,852
Dic3012C4 = Dic3012C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:12C4480,50
Dic3013C4 = D6013C4φ: C4/C2C2 ⊆ Out Dic301204Dic30:13C4480,56
Dic3014C4 = Dic3014C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:14C4480,416
Dic3015C4 = Dic3015C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:15C4480,51
Dic3016C4 = D6016C4φ: C4/C2C2 ⊆ Out Dic301204Dic30:16C4480,57
Dic3017C4 = Dic3017C4φ: C4/C2C2 ⊆ Out Dic30480Dic30:17C4480,409

Non-split extensions G=N.Q with N=Dic30 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic30.1C4 = D12.F5φ: C4/C1C4 ⊆ Out Dic302408-Dic30.1C4480,989
Dic30.2C4 = D12.2F5φ: C4/C1C4 ⊆ Out Dic302408-Dic30.2C4480,987
Dic30.3C4 = D60.3C4φ: C4/C2C2 ⊆ Out Dic302404Dic30.3C4480,872
Dic30.4C4 = D60.4C4φ: C4/C2C2 ⊆ Out Dic302404Dic30.4C4480,367
Dic30.5C4 = D60.5C4φ: C4/C2C2 ⊆ Out Dic302404Dic30.5C4480,366
Dic30.6C4 = D60.6C4φ: trivial image2402Dic30.6C4480,866

׿
×
𝔽