Copied to
clipboard

G = D124F5order 480 = 25·3·5

4th semidirect product of D12 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D124F5, Dic302C4, D10.1D12, C151C4≀C2, C4.F51S3, (C5×D12)⋊2C4, C20.5(C4×S3), C60.3(C2×C4), C4.10(S3×F5), C12.3(C2×F5), C31(D4⋊F5), (C4×D5).23D6, (C6×D5).21D4, C2.8(D6⋊F5), C52(D12⋊C4), C10.5(D6⋊C4), C6.5(C22⋊F5), D125D5.3C2, C30.5(C22⋊C4), (C3×Dic5).24D4, (D5×C12).32C22, Dic5.26(C3⋊D4), (C4×C3⋊F5)⋊1C2, (C3×C4.F5)⋊1C2, SmallGroup(480,231)

Series: Derived Chief Lower central Upper central

C1C60 — D124F5
C1C5C15C30C3×Dic5D5×C12C3×C4.F5 — D124F5
C15C30C60 — D124F5
C1C2C4

Generators and relations for D124F5
 G = < a,b,c,d | a12=b2=c5=d4=1, bab=a-1, ac=ca, dad-1=a5, bc=cb, dbd-1=a7b, dcd-1=c3 >

Subgroups: 548 in 88 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, Dic5, C20, F5, D10, C2×C10, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C5×S3, C3×D5, C30, C4≀C2, C5⋊C8, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C2×F5, C4×Dic3, C3×M4(2), C4○D12, C3×Dic5, Dic15, C60, C3⋊F5, C6×D5, S3×C10, C4.F5, C4×F5, D42D5, D12⋊C4, C3×C5⋊C8, S3×Dic5, C15⋊D4, D5×C12, C5×D12, Dic30, C2×C3⋊F5, D4⋊F5, C3×C4.F5, C4×C3⋊F5, D125D5, D124F5
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C4≀C2, C2×F5, D6⋊C4, C22⋊F5, D12⋊C4, S3×F5, D4⋊F5, D6⋊F5, D124F5

Smallest permutation representation of D124F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 39)(2 38)(3 37)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 100)(14 99)(15 98)(16 97)(17 108)(18 107)(19 106)(20 105)(21 104)(22 103)(23 102)(24 101)(25 89)(26 88)(27 87)(28 86)(29 85)(30 96)(31 95)(32 94)(33 93)(34 92)(35 91)(36 90)(49 114)(50 113)(51 112)(52 111)(53 110)(54 109)(55 120)(56 119)(57 118)(58 117)(59 116)(60 115)(61 82)(62 81)(63 80)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 84)(72 83)
(1 85 49 23 81)(2 86 50 24 82)(3 87 51 13 83)(4 88 52 14 84)(5 89 53 15 73)(6 90 54 16 74)(7 91 55 17 75)(8 92 56 18 76)(9 93 57 19 77)(10 94 58 20 78)(11 95 59 21 79)(12 96 60 22 80)(25 110 98 70 47)(26 111 99 71 48)(27 112 100 72 37)(28 113 101 61 38)(29 114 102 62 39)(30 115 103 63 40)(31 116 104 64 41)(32 117 105 65 42)(33 118 106 66 43)(34 119 107 67 44)(35 120 108 68 45)(36 109 97 69 46)
(1 4 7 10)(2 9 8 3)(5 12 11 6)(13 86 57 76)(14 91 58 81)(15 96 59 74)(16 89 60 79)(17 94 49 84)(18 87 50 77)(19 92 51 82)(20 85 52 75)(21 90 53 80)(22 95 54 73)(23 88 55 78)(24 93 56 83)(25 114 70 102)(26 119 71 107)(27 112 72 100)(28 117 61 105)(29 110 62 98)(30 115 63 103)(31 120 64 108)(32 113 65 101)(33 118 66 106)(34 111 67 99)(35 116 68 104)(36 109 69 97)(38 42)(39 47)(41 45)(44 48)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,39)(2,38)(3,37)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,100)(14,99)(15,98)(16,97)(17,108)(18,107)(19,106)(20,105)(21,104)(22,103)(23,102)(24,101)(25,89)(26,88)(27,87)(28,86)(29,85)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,120)(56,119)(57,118)(58,117)(59,116)(60,115)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,84)(72,83), (1,85,49,23,81)(2,86,50,24,82)(3,87,51,13,83)(4,88,52,14,84)(5,89,53,15,73)(6,90,54,16,74)(7,91,55,17,75)(8,92,56,18,76)(9,93,57,19,77)(10,94,58,20,78)(11,95,59,21,79)(12,96,60,22,80)(25,110,98,70,47)(26,111,99,71,48)(27,112,100,72,37)(28,113,101,61,38)(29,114,102,62,39)(30,115,103,63,40)(31,116,104,64,41)(32,117,105,65,42)(33,118,106,66,43)(34,119,107,67,44)(35,120,108,68,45)(36,109,97,69,46), (1,4,7,10)(2,9,8,3)(5,12,11,6)(13,86,57,76)(14,91,58,81)(15,96,59,74)(16,89,60,79)(17,94,49,84)(18,87,50,77)(19,92,51,82)(20,85,52,75)(21,90,53,80)(22,95,54,73)(23,88,55,78)(24,93,56,83)(25,114,70,102)(26,119,71,107)(27,112,72,100)(28,117,61,105)(29,110,62,98)(30,115,63,103)(31,120,64,108)(32,113,65,101)(33,118,66,106)(34,111,67,99)(35,116,68,104)(36,109,69,97)(38,42)(39,47)(41,45)(44,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,39)(2,38)(3,37)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,100)(14,99)(15,98)(16,97)(17,108)(18,107)(19,106)(20,105)(21,104)(22,103)(23,102)(24,101)(25,89)(26,88)(27,87)(28,86)(29,85)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,120)(56,119)(57,118)(58,117)(59,116)(60,115)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,84)(72,83), (1,85,49,23,81)(2,86,50,24,82)(3,87,51,13,83)(4,88,52,14,84)(5,89,53,15,73)(6,90,54,16,74)(7,91,55,17,75)(8,92,56,18,76)(9,93,57,19,77)(10,94,58,20,78)(11,95,59,21,79)(12,96,60,22,80)(25,110,98,70,47)(26,111,99,71,48)(27,112,100,72,37)(28,113,101,61,38)(29,114,102,62,39)(30,115,103,63,40)(31,116,104,64,41)(32,117,105,65,42)(33,118,106,66,43)(34,119,107,67,44)(35,120,108,68,45)(36,109,97,69,46), (1,4,7,10)(2,9,8,3)(5,12,11,6)(13,86,57,76)(14,91,58,81)(15,96,59,74)(16,89,60,79)(17,94,49,84)(18,87,50,77)(19,92,51,82)(20,85,52,75)(21,90,53,80)(22,95,54,73)(23,88,55,78)(24,93,56,83)(25,114,70,102)(26,119,71,107)(27,112,72,100)(28,117,61,105)(29,110,62,98)(30,115,63,103)(31,120,64,108)(32,113,65,101)(33,118,66,106)(34,111,67,99)(35,116,68,104)(36,109,69,97)(38,42)(39,47)(41,45)(44,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,39),(2,38),(3,37),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,100),(14,99),(15,98),(16,97),(17,108),(18,107),(19,106),(20,105),(21,104),(22,103),(23,102),(24,101),(25,89),(26,88),(27,87),(28,86),(29,85),(30,96),(31,95),(32,94),(33,93),(34,92),(35,91),(36,90),(49,114),(50,113),(51,112),(52,111),(53,110),(54,109),(55,120),(56,119),(57,118),(58,117),(59,116),(60,115),(61,82),(62,81),(63,80),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,84),(72,83)], [(1,85,49,23,81),(2,86,50,24,82),(3,87,51,13,83),(4,88,52,14,84),(5,89,53,15,73),(6,90,54,16,74),(7,91,55,17,75),(8,92,56,18,76),(9,93,57,19,77),(10,94,58,20,78),(11,95,59,21,79),(12,96,60,22,80),(25,110,98,70,47),(26,111,99,71,48),(27,112,100,72,37),(28,113,101,61,38),(29,114,102,62,39),(30,115,103,63,40),(31,116,104,64,41),(32,117,105,65,42),(33,118,106,66,43),(34,119,107,67,44),(35,120,108,68,45),(36,109,97,69,46)], [(1,4,7,10),(2,9,8,3),(5,12,11,6),(13,86,57,76),(14,91,58,81),(15,96,59,74),(16,89,60,79),(17,94,49,84),(18,87,50,77),(19,92,51,82),(20,85,52,75),(21,90,53,80),(22,95,54,73),(23,88,55,78),(24,93,56,83),(25,114,70,102),(26,119,71,107),(27,112,72,100),(28,117,61,105),(29,110,62,98),(30,115,63,103),(31,120,64,108),(32,113,65,101),(33,118,66,106),(34,111,67,99),(35,116,68,104),(36,109,69,97),(38,42),(39,47),(41,45),(44,48)]])

33 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B8A8B10A10B10C12A12B12C 15  20 24A24B24C24D 30 60A60B
order122234444444456688101010121212152024242424306060
size111012225530303030604220202042424410108820202020888

33 irreducible representations

dim1111112222222244448888
type+++++++++++++-+-
imageC1C2C2C2C4C4S3D4D4D6C3⋊D4C4×S3D12C4≀C2F5C2×F5C22⋊F5D12⋊C4S3×F5D4⋊F5D6⋊F5D124F5
kernelD124F5C3×C4.F5C4×C3⋊F5D125D5C5×D12Dic30C4.F5C3×Dic5C6×D5C4×D5Dic5C20D10C15D12C12C6C5C4C3C2C1
# reps1111221111222411221112

Matrix representation of D124F5 in GL8(𝔽241)

640000000
205177000000
00010000
0024010000
00001000
00000100
00000010
00000001
,
2124000000
3129000000
0099430000
001421420000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
0000000240
0000100240
0000010240
0000001240
,
1770000000
711000000
00177640000
000640000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(241))| [64,205,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[212,31,0,0,0,0,0,0,4,29,0,0,0,0,0,0,0,0,99,142,0,0,0,0,0,0,43,142,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240],[177,71,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,64,64,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

D124F5 in GAP, Magma, Sage, TeX

D_{12}\rtimes_4F_5
% in TeX

G:=Group("D12:4F5");
// GroupNames label

G:=SmallGroup(480,231);
// by ID

G=gap.SmallGroup(480,231);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,100,675,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^7*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽