Extensions 1→N→G→Q→1 with N=C4 and Q=C2×A5

Direct product G=N×Q with N=C4 and Q=C2×A5
dρLabelID
C2×C4×A540C2xC4xA5480,954

Semidirect products G=N:Q with N=C4 and Q=C2×A5
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×A5) = D4×A5φ: C2×A5/A5C2 ⊆ Aut C4206+C4:(C2xA5)480,956

Non-split extensions G=N.Q with N=C4 and Q=C2×A5
extensionφ:Q→Aut NdρLabelID
C4.1(C2×A5) = D4.A5φ: C2×A5/A5C2 ⊆ Aut C4484-C4.1(C2xA5)480,957
C4.2(C2×A5) = Q8×A5φ: C2×A5/A5C2 ⊆ Aut C4406-C4.2(C2xA5)480,958
C4.3(C2×A5) = Q8.A5φ: C2×A5/A5C2 ⊆ Aut C4484+C4.3(C2xA5)480,959
C4.4(C2×A5) = C8×A5central extension (φ=1)403C4.4(C2xA5)480,220
C4.5(C2×A5) = C8.A5central extension (φ=1)482C4.5(C2xA5)480,221
C4.6(C2×A5) = C2×C4.A5central extension (φ=1)48C4.6(C2xA5)480,955

׿
×
𝔽