Copied to
clipboard

G = D4.A5order 480 = 25·3·5

The non-split extension by D4 of A5 acting through Inn(D4)

non-abelian, not soluble

Aliases: D4.A5, SL2(F5).5C22, C4.A5:1C2, C4.1(C2xA5), C22.(C2xA5), C2.4(C22xA5), (C2xSL2(F5)):1C2, SmallGroup(480,957)

Series: ChiefDerived Lower central Upper central

C1C2C22D4 — D4.A5
SL2(F5) — D4.A5
SL2(F5) — D4.A5
C1C2D4

Subgroups: 748 in 83 conjugacy classes, 11 normal (7 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C2xC4, D4, D4, Q8, D5, C10, Dic3, C12, D6, C2xC6, C2xQ8, C4oD4, Dic5, C20, D10, C2xC10, SL2(F3), Dic6, C4xS3, C2xDic3, C3:D4, C3xD4, 2- 1+4, Dic10, C4xD5, C2xDic5, C5:D4, C5xD4, C2xSL2(F3), C4.A4, D4:2S3, D4:2D5, D4.A4, SL2(F5), C4.A5, C2xSL2(F5), D4.A5
Quotients: C1, C2, C22, A5, C2xA5, C22xA5, D4.A5

Character table of D4.A5

 class 12A2B2C2D34A4B4C4D5A5B6A6B6C10A10B10C10D10E10F1220A20B
 size 1122302023030301212204040121224242424402424
ρ1111111111111111111111111    trivial
ρ211-1-1111-1-11111-1-111-1-1-1-1111    linear of order 2
ρ3111-1-11-11-11111-111111-1-1-1-1-1    linear of order 2
ρ411-11-11-1-1111111-111-1-111-1-1-1    linear of order 2
ρ533-3310-31-1-11-5/21+5/20001-5/21+5/2-1-5/2-1+5/21+5/21-5/20-1-5/2-1+5/2    orthogonal lifted from C2xA5
ρ6333-310-3-11-11-5/21+5/20001-5/21+5/21+5/21-5/2-1-5/2-1+5/20-1-5/2-1+5/2    orthogonal lifted from C2xA5
ρ73333-103-1-1-11+5/21-5/20001+5/21-5/21-5/21+5/21-5/21+5/201-5/21+5/2    orthogonal lifted from A5
ρ833-3-3-10311-11-5/21+5/20001-5/21+5/2-1-5/2-1+5/2-1-5/2-1+5/201+5/21-5/2    orthogonal lifted from C2xA5
ρ9333-310-3-11-11+5/21-5/20001+5/21-5/21-5/21+5/2-1+5/2-1-5/20-1+5/2-1-5/2    orthogonal lifted from C2xA5
ρ103333-103-1-1-11-5/21+5/20001-5/21+5/21+5/21-5/21+5/21-5/201+5/21-5/2    orthogonal lifted from A5
ρ1133-3-3-10311-11+5/21-5/20001+5/21-5/2-1+5/2-1-5/2-1+5/2-1-5/201-5/21+5/2    orthogonal lifted from C2xA5
ρ1233-3310-31-1-11+5/21-5/20001+5/21-5/2-1+5/2-1-5/21-5/21+5/20-1+5/2-1-5/2    orthogonal lifted from C2xA5
ρ1344-4401-4000-1-111-1-1-111-1-1-111    orthogonal lifted from C2xA5
ρ14444-401-4000-1-11-11-1-1-1-111-111    orthogonal lifted from C2xA5
ρ154444014000-1-1111-1-1-1-1-1-11-1-1    orthogonal lifted from A5
ρ1644-4-4014000-1-11-1-1-1-111111-1-1    orthogonal lifted from C2xA5
ρ174-4000-20000-1+5-1-52001-51+50000000    symplectic faithful, Schur index 2
ρ184-4000-20000-1-5-1+52001+51-50000000    symplectic faithful, Schur index 2
ρ1955-55-1-1-5-11100-1-11000000100    orthogonal lifted from C2xA5
ρ20555-5-1-1-51-1100-11-1000000100    orthogonal lifted from C2xA5
ρ2155-5-51-15-1-1100-111000000-100    orthogonal lifted from C2xA5
ρ2255551-1511100-1-1-1000000-100    orthogonal lifted from A5
ρ238-800020000-2-2-200220000000    symplectic faithful, Schur index 2
ρ2412-120000000022000-2-20000000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.A5
On 48 points
Generators in S48
(1 24 46 20 11)(2 10 15 43 23 8 4 21 37 17)(5 7 18 40 14)(6 12)(13 47 27 35 45 19 41 33 29 39)(16 44 30 32 48)(22 38 36 26 42)(25 31)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,24,46,20,11)(2,10,15,43,23,8,4,21,37,17)(5,7,18,40,14)(6,12)(13,47,27,35,45,19,41,33,29,39)(16,44,30,32,48)(22,38,36,26,42)(25,31), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,24,46,20,11)(2,10,15,43,23,8,4,21,37,17)(5,7,18,40,14)(6,12)(13,47,27,35,45,19,41,33,29,39)(16,44,30,32,48)(22,38,36,26,42)(25,31), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,24,46,20,11),(2,10,15,43,23,8,4,21,37,17),(5,7,18,40,14),(6,12),(13,47,27,35,45,19,41,33,29,39),(16,44,30,32,48),(22,38,36,26,42),(25,31)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)]])

Matrix representation of D4.A5 in GL4(F5) generated by

0102
4020
0404
1020
,
2040
0401
4000
0204
G:=sub<GL(4,GF(5))| [0,4,0,1,1,0,4,0,0,2,0,2,2,0,4,0],[2,0,4,0,0,4,0,2,4,0,0,0,0,1,0,4] >;

D4.A5 in GAP, Magma, Sage, TeX

D_4.A_5
% in TeX

G:=Group("D4.A5");
// GroupNames label

G:=SmallGroup(480,957);
// by ID

G=gap.SmallGroup(480,957);
# by ID

Export

Character table of D4.A5 in TeX

׿
x
:
Z
F
o
wr
Q
<