Copied to
clipboard

G = Q8×A5order 480 = 25·3·5

Direct product of Q8 and A5

direct product, non-abelian, not soluble

Aliases: Q8×A5, C4.2(C2×A5), (C4×A5).1C2, C2.5(C22×A5), (C2×A5).8C22, SmallGroup(480,958)

Series: ChiefDerived Lower central Upper central

C1C2C4Q8 — Q8×A5
A5C2×A5 — Q8×A5
A5C2×A5 — Q8×A5
C1C2Q8

Subgroups: 706 in 84 conjugacy classes, 12 normal (6 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, Q8, Q8, C23, D5, C10, Dic3, C12, A4, D6, C22×C4, C2×Q8, Dic5, C20, D10, Dic6, C4×S3, C3×Q8, C2×A4, C22×Q8, Dic10, C4×D5, C5×Q8, C4×A4, S3×Q8, A5, Q8×D5, Q8×A4, C2×A5, C4×A5, Q8×A5
Quotients: C1, C2, C22, Q8, A5, C2×A5, C22×A5, Q8×A5

Character table of Q8×A5

 class 12A2B2C34A4B4C4D4E4F5A5B610A10B12A12B12C20A20B20C20D20E20F
 size 111515202223030301212201212404040242424242424
ρ11111111111111111111111111    trivial
ρ2111111-1-1-1-1111111-1-1111-1-1-1-1    linear of order 2
ρ311111-11-1-11-111111-11-1-1-111-1-1    linear of order 2
ρ411111-1-111-1-1111111-1-1-1-1-1-111    linear of order 2
ρ52-22-2200000022-2-2-2000000000    symplectic lifted from Q8, Schur index 2
ρ633-1-10-3-33-1111+5/21-5/201-5/21+5/2000-1-5/2-1+5/2-1+5/2-1-5/21-5/21+5/2    orthogonal lifted from C2×A5
ρ733-1-10-33-31-111+5/21-5/201-5/21+5/2000-1-5/2-1+5/21-5/21+5/2-1+5/2-1-5/2    orthogonal lifted from C2×A5
ρ833-1-103-3-311-11-5/21+5/201+5/21-5/20001-5/21+5/2-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from C2×A5
ρ933-1-10333-1-1-11-5/21+5/201+5/21-5/20001-5/21+5/21+5/21-5/21+5/21-5/2    orthogonal lifted from A5
ρ1033-1-10333-1-1-11+5/21-5/201-5/21+5/20001+5/21-5/21-5/21+5/21-5/21+5/2    orthogonal lifted from A5
ρ1133-1-103-3-311-11+5/21-5/201-5/21+5/20001+5/21-5/2-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from C2×A5
ρ1233-1-10-3-33-1111-5/21+5/201+5/21-5/2000-1+5/2-1-5/2-1-5/2-1+5/21+5/21-5/2    orthogonal lifted from C2×A5
ρ1333-1-10-33-31-111-5/21+5/201+5/21-5/2000-1+5/2-1-5/21+5/21-5/2-1-5/2-1+5/2    orthogonal lifted from C2×A5
ρ14440014-4-4000-1-11-1-1-1-11-1-11111    orthogonal lifted from C2×A5
ρ1544001444000-1-11-1-1111-1-1-1-1-1-1    orthogonal lifted from A5
ρ1644001-44-4000-1-11-1-1-11-111-1-111    orthogonal lifted from C2×A5
ρ1744001-4-44000-1-11-1-11-1-11111-1-1    orthogonal lifted from C2×A5
ρ185511-155511100-100-1-1-1000000    orthogonal lifted from A5
ρ195511-1-55-5-11-100-1001-11000000    orthogonal lifted from C2×A5
ρ205511-1-5-551-1-100-100-111000000    orthogonal lifted from C2×A5
ρ215511-15-5-5-1-1100-10011-1000000    orthogonal lifted from C2×A5
ρ226-6-2200000001-51+50-1-5-1+5000000000    symplectic faithful, Schur index 2
ρ236-6-2200000001+51-50-1+5-1-5000000000    symplectic faithful, Schur index 2
ρ248-8002000000-2-2-222000000000    symplectic faithful, Schur index 2
ρ2510-102-2-200000000200000000000    symplectic faithful, Schur index 2

Smallest permutation representation of Q8×A5
On 40 points
Generators in S40
(1 32 19 38 5 36 11 22 9 28 15 26)(2 39 12 29)(3 30 13 40)(4 33 10 31 16 37 14 23 20 21 6 27)(7 34 17 24)(8 25 18 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,32,19,38,5,36,11,22,9,28,15,26)(2,39,12,29)(3,30,13,40)(4,33,10,31,16,37,14,23,20,21,6,27)(7,34,17,24)(8,25,18,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)>;

G:=Group( (1,32,19,38,5,36,11,22,9,28,15,26)(2,39,12,29)(3,30,13,40)(4,33,10,31,16,37,14,23,20,21,6,27)(7,34,17,24)(8,25,18,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,32,19,38,5,36,11,22,9,28,15,26),(2,39,12,29),(3,30,13,40),(4,33,10,31,16,37,14,23,20,21,6,27),(7,34,17,24),(8,25,18,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)]])

Matrix representation of Q8×A5 in GL5(𝔽61)

242000
4259000
00001
000601
006001
,
01000
600000
0022052
009013
00316022

G:=sub<GL(5,GF(61))| [2,42,0,0,0,42,59,0,0,0,0,0,0,0,60,0,0,0,60,0,0,0,1,1,1],[0,60,0,0,0,1,0,0,0,0,0,0,22,9,31,0,0,0,0,60,0,0,52,13,22] >;

Q8×A5 in GAP, Magma, Sage, TeX

Q_8\times A_5
% in TeX

G:=Group("Q8xA5");
// GroupNames label

G:=SmallGroup(480,958);
// by ID

G=gap.SmallGroup(480,958);
# by ID

Export

Character table of Q8×A5 in TeX

׿
×
𝔽