Extensions 1→N→G→Q→1 with N=C2xD5xDic3 and Q=C2

Direct product G=NxQ with N=C2xD5xDic3 and Q=C2
dρLabelID
C22xD5xDic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C2xD5xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD5xDic3):1C2 = Dic3:4D20φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):1C2480,471
(C2xD5xDic3):2C2 = Dic15:13D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):2C2480,472
(C2xD5xDic3):3C2 = (C6xD5).D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):3C2480,483
(C2xD5xDic3):4C2 = Dic15:D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):4C2480,484
(C2xD5xDic3):5C2 = Dic3:D20φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):5C2480,485
(C2xD5xDic3):6C2 = D10.16D12φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):6C2480,489
(C2xD5xDic3):7C2 = D10.17D12φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):7C2480,490
(C2xD5xDic3):8C2 = Dic3xD20φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):8C2480,501
(C2xD5xDic3):9C2 = D20:8Dic3φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):9C2480,510
(C2xD5xDic3):10C2 = C15:17(C4xD4)φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):10C2480,517
(C2xD5xDic3):11C2 = Dic15:9D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):11C2480,518
(C2xD5xDic3):12C2 = D5xD6:C4φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3):12C2480,547
(C2xD5xDic3):13C2 = D5xC6.D4φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3):13C2480,623
(C2xD5xDic3):14C2 = C23.17(S3xD5)φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):14C2480,624
(C2xD5xDic3):15C2 = (C6xD5):D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):15C2480,625
(C2xD5xDic3):16C2 = Dic15:3D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):16C2480,626
(C2xD5xDic3):17C2 = Dic3xC5:D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):17C2480,629
(C2xD5xDic3):18C2 = Dic15:16D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):18C2480,635
(C2xD5xDic3):19C2 = C2xD20:5S3φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):19C2480,1074
(C2xD5xDic3):20C2 = C2xD20:S3φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):20C2480,1075
(C2xD5xDic3):21C2 = D5xD4:2S3φ: C2/C1C2 ⊆ Out C2xD5xDic31208-(C2xD5xDic3):21C2480,1098
(C2xD5xDic3):22C2 = C2xDic5.D6φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):22C2480,1113
(C2xD5xDic3):23C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3):23C2480,1114
(C2xD5xDic3):24C2 = C2xD5xC3:D4φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3):24C2480,1122
(C2xD5xDic3):25C2 = S3xC2xC4xD5φ: trivial image120(C2xD5xDic3):25C2480,1086

Non-split extensions G=N.Q with N=C2xD5xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD5xDic3).1C2 = D5xDic3:C4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).1C2480,468
(C2xD5xDic3).2C2 = (D5xDic3):C4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).2C2480,469
(C2xD5xDic3).3C2 = D10.19(C4xS3)φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).3C2480,470
(C2xD5xDic3).4C2 = D5xC4:Dic3φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).4C2480,488
(C2xD5xDic3).5C2 = D10:1Dic6φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).5C2480,497
(C2xD5xDic3).6C2 = D10:2Dic6φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).6C2480,498
(C2xD5xDic3).7C2 = Dic15.D4φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).7C2480,506
(C2xD5xDic3).8C2 = D10:4Dic6φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).8C2480,507
(C2xD5xDic3).9C2 = C2xD5xDic6φ: C2/C1C2 ⊆ Out C2xD5xDic3240(C2xD5xDic3).9C2480,1073
(C2xD5xDic3).10C2 = D10.20D12φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3).10C2480,243
(C2xD5xDic3).11C2 = C2xDic3xF5φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3).11C2480,998
(C2xD5xDic3).12C2 = C22:F5.S3φ: C2/C1C2 ⊆ Out C2xD5xDic31208-(C2xD5xDic3).12C2480,999
(C2xD5xDic3).13C2 = C2xDic3:F5φ: C2/C1C2 ⊆ Out C2xD5xDic3120(C2xD5xDic3).13C2480,1001
(C2xD5xDic3).14C2 = C4xD5xDic3φ: trivial image240(C2xD5xDic3).14C2480,467

׿
x
:
Z
F
o
wr
Q
<