direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D20⋊5S3, D20⋊27D6, C30.2C24, C60.110C23, Dic30⋊28C22, Dic15.2C23, (C6×D20)⋊7C2, (C4×S3)⋊14D10, (C2×D20)⋊15S3, C6⋊3(C4○D20), C30⋊1(C4○D4), C6.2(C23×D5), (C2×C20).305D6, C15⋊D4⋊8C22, C10.2(S3×C23), C10⋊2(D4⋊2S3), (C6×D5).1C23, (S3×C20)⋊16C22, (C2×Dic30)⋊24C2, (C2×C12).159D10, (C3×D20)⋊22C22, (D5×Dic3)⋊5C22, (C22×D5).67D6, D6.22(C22×D5), D10.1(C22×S3), (S3×C10).24C23, (C2×C30).221C23, (C2×C60).124C22, C20.160(C22×S3), (C22×S3).80D10, C12.121(C22×D5), (C2×Dic3).189D10, Dic3.32(C22×D5), (C5×Dic3).25C23, (C2×Dic15).148C22, (C10×Dic3).206C22, (S3×C2×C4)⋊3D5, (S3×C2×C20)⋊4C2, C3⋊3(C2×C4○D20), C15⋊1(C2×C4○D4), C5⋊2(C2×D4⋊2S3), C4.109(C2×S3×D5), C2.6(C22×S3×D5), (C2×D5×Dic3)⋊19C2, (C2×C15⋊D4)⋊17C2, C22.93(C2×S3×D5), (C2×C4).115(S3×D5), (D5×C2×C6).58C22, (S3×C2×C10).97C22, (C2×C6).233(C22×D5), (C2×C10).233(C22×S3), SmallGroup(480,1074)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D20⋊5S3
G = < a,b,c,d,e | a2=b20=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b10c, ede=d-1 >
Subgroups: 1468 in 328 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C10, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C5×S3, C3×D5, C30, C30, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C2×Dic6, S3×C2×C4, D4⋊2S3, C22×Dic3, C2×C3⋊D4, C6×D4, C5×Dic3, Dic15, C60, C6×D5, C6×D5, S3×C10, S3×C10, C2×C30, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, C2×D4⋊2S3, D5×Dic3, C15⋊D4, C3×D20, S3×C20, C10×Dic3, Dic30, C2×Dic15, C2×C60, D5×C2×C6, S3×C2×C10, C2×C4○D20, D20⋊5S3, C2×D5×Dic3, C2×C15⋊D4, C6×D20, S3×C2×C20, C2×Dic30, C2×D20⋊5S3
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, C24, D10, C22×S3, C2×C4○D4, C22×D5, D4⋊2S3, S3×C23, S3×D5, C4○D20, C23×D5, C2×D4⋊2S3, C2×S3×D5, C2×C4○D20, D20⋊5S3, C22×S3×D5, C2×D20⋊5S3
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(41 223)(42 224)(43 225)(44 226)(45 227)(46 228)(47 229)(48 230)(49 231)(50 232)(51 233)(52 234)(53 235)(54 236)(55 237)(56 238)(57 239)(58 240)(59 221)(60 222)(61 174)(62 175)(63 176)(64 177)(65 178)(66 179)(67 180)(68 161)(69 162)(70 163)(71 164)(72 165)(73 166)(74 167)(75 168)(76 169)(77 170)(78 171)(79 172)(80 173)(81 189)(82 190)(83 191)(84 192)(85 193)(86 194)(87 195)(88 196)(89 197)(90 198)(91 199)(92 200)(93 181)(94 182)(95 183)(96 184)(97 185)(98 186)(99 187)(100 188)(101 153)(102 154)(103 155)(104 156)(105 157)(106 158)(107 159)(108 160)(109 141)(110 142)(111 143)(112 144)(113 145)(114 146)(115 147)(116 148)(117 149)(118 150)(119 151)(120 152)(121 212)(122 213)(123 214)(124 215)(125 216)(126 217)(127 218)(128 219)(129 220)(130 201)(131 202)(132 203)(133 204)(134 205)(135 206)(136 207)(137 208)(138 209)(139 210)(140 211)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(59 60)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 92)(82 91)(83 90)(84 89)(85 88)(86 87)(93 100)(94 99)(95 98)(96 97)(101 104)(102 103)(105 120)(106 119)(107 118)(108 117)(109 116)(110 115)(111 114)(112 113)(121 130)(122 129)(123 128)(124 127)(125 126)(131 140)(132 139)(133 138)(134 137)(135 136)(141 148)(142 147)(143 146)(144 145)(149 160)(150 159)(151 158)(152 157)(153 156)(154 155)(161 166)(162 165)(163 164)(167 180)(168 179)(169 178)(170 177)(171 176)(172 175)(173 174)(181 188)(182 187)(183 186)(184 185)(189 200)(190 199)(191 198)(192 197)(193 196)(194 195)(201 212)(202 211)(203 210)(204 209)(205 208)(206 207)(213 220)(214 219)(215 218)(216 217)(221 222)(223 240)(224 239)(225 238)(226 237)(227 236)(228 235)(229 234)(230 233)(231 232)
(1 185 232)(2 186 233)(3 187 234)(4 188 235)(5 189 236)(6 190 237)(7 191 238)(8 192 239)(9 193 240)(10 194 221)(11 195 222)(12 196 223)(13 197 224)(14 198 225)(15 199 226)(16 200 227)(17 181 228)(18 182 229)(19 183 230)(20 184 231)(21 89 42)(22 90 43)(23 91 44)(24 92 45)(25 93 46)(26 94 47)(27 95 48)(28 96 49)(29 97 50)(30 98 51)(31 99 52)(32 100 53)(33 81 54)(34 82 55)(35 83 56)(36 84 57)(37 85 58)(38 86 59)(39 87 60)(40 88 41)(61 145 126)(62 146 127)(63 147 128)(64 148 129)(65 149 130)(66 150 131)(67 151 132)(68 152 133)(69 153 134)(70 154 135)(71 155 136)(72 156 137)(73 157 138)(74 158 139)(75 159 140)(76 160 121)(77 141 122)(78 142 123)(79 143 124)(80 144 125)(101 205 162)(102 206 163)(103 207 164)(104 208 165)(105 209 166)(106 210 167)(107 211 168)(108 212 169)(109 213 170)(110 214 171)(111 215 172)(112 216 173)(113 217 174)(114 218 175)(115 219 176)(116 220 177)(117 201 178)(118 202 179)(119 203 180)(120 204 161)
(1 121)(2 122)(3 123)(4 124)(5 125)(6 126)(7 127)(8 128)(9 129)(10 130)(11 131)(12 132)(13 133)(14 134)(15 135)(16 136)(17 137)(18 138)(19 139)(20 140)(21 204)(22 205)(23 206)(24 207)(25 208)(26 209)(27 210)(28 211)(29 212)(30 213)(31 214)(32 215)(33 216)(34 217)(35 218)(36 219)(37 220)(38 201)(39 202)(40 203)(41 180)(42 161)(43 162)(44 163)(45 164)(46 165)(47 166)(48 167)(49 168)(50 169)(51 170)(52 171)(53 172)(54 173)(55 174)(56 175)(57 176)(58 177)(59 178)(60 179)(61 237)(62 238)(63 239)(64 240)(65 221)(66 222)(67 223)(68 224)(69 225)(70 226)(71 227)(72 228)(73 229)(74 230)(75 231)(76 232)(77 233)(78 234)(79 235)(80 236)(81 112)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 101)(91 102)(92 103)(93 104)(94 105)(95 106)(96 107)(97 108)(98 109)(99 110)(100 111)(141 186)(142 187)(143 188)(144 189)(145 190)(146 191)(147 192)(148 193)(149 194)(150 195)(151 196)(152 197)(153 198)(154 199)(155 200)(156 181)(157 182)(158 183)(159 184)(160 185)
G:=sub<Sym(240)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(41,223)(42,224)(43,225)(44,226)(45,227)(46,228)(47,229)(48,230)(49,231)(50,232)(51,233)(52,234)(53,235)(54,236)(55,237)(56,238)(57,239)(58,240)(59,221)(60,222)(61,174)(62,175)(63,176)(64,177)(65,178)(66,179)(67,180)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,169)(77,170)(78,171)(79,172)(80,173)(81,189)(82,190)(83,191)(84,192)(85,193)(86,194)(87,195)(88,196)(89,197)(90,198)(91,199)(92,200)(93,181)(94,182)(95,183)(96,184)(97,185)(98,186)(99,187)(100,188)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160)(109,141)(110,142)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,151)(120,152)(121,212)(122,213)(123,214)(124,215)(125,216)(126,217)(127,218)(128,219)(129,220)(130,201)(131,202)(132,203)(133,204)(134,205)(135,206)(136,207)(137,208)(138,209)(139,210)(140,211), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(93,100)(94,99)(95,98)(96,97)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,148)(142,147)(143,146)(144,145)(149,160)(150,159)(151,158)(152,157)(153,156)(154,155)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174)(181,188)(182,187)(183,186)(184,185)(189,200)(190,199)(191,198)(192,197)(193,196)(194,195)(201,212)(202,211)(203,210)(204,209)(205,208)(206,207)(213,220)(214,219)(215,218)(216,217)(221,222)(223,240)(224,239)(225,238)(226,237)(227,236)(228,235)(229,234)(230,233)(231,232), (1,185,232)(2,186,233)(3,187,234)(4,188,235)(5,189,236)(6,190,237)(7,191,238)(8,192,239)(9,193,240)(10,194,221)(11,195,222)(12,196,223)(13,197,224)(14,198,225)(15,199,226)(16,200,227)(17,181,228)(18,182,229)(19,183,230)(20,184,231)(21,89,42)(22,90,43)(23,91,44)(24,92,45)(25,93,46)(26,94,47)(27,95,48)(28,96,49)(29,97,50)(30,98,51)(31,99,52)(32,100,53)(33,81,54)(34,82,55)(35,83,56)(36,84,57)(37,85,58)(38,86,59)(39,87,60)(40,88,41)(61,145,126)(62,146,127)(63,147,128)(64,148,129)(65,149,130)(66,150,131)(67,151,132)(68,152,133)(69,153,134)(70,154,135)(71,155,136)(72,156,137)(73,157,138)(74,158,139)(75,159,140)(76,160,121)(77,141,122)(78,142,123)(79,143,124)(80,144,125)(101,205,162)(102,206,163)(103,207,164)(104,208,165)(105,209,166)(106,210,167)(107,211,168)(108,212,169)(109,213,170)(110,214,171)(111,215,172)(112,216,173)(113,217,174)(114,218,175)(115,219,176)(116,220,177)(117,201,178)(118,202,179)(119,203,180)(120,204,161), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,204)(22,205)(23,206)(24,207)(25,208)(26,209)(27,210)(28,211)(29,212)(30,213)(31,214)(32,215)(33,216)(34,217)(35,218)(36,219)(37,220)(38,201)(39,202)(40,203)(41,180)(42,161)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,176)(58,177)(59,178)(60,179)(61,237)(62,238)(63,239)(64,240)(65,221)(66,222)(67,223)(68,224)(69,225)(70,226)(71,227)(72,228)(73,229)(74,230)(75,231)(76,232)(77,233)(78,234)(79,235)(80,236)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,111)(141,186)(142,187)(143,188)(144,189)(145,190)(146,191)(147,192)(148,193)(149,194)(150,195)(151,196)(152,197)(153,198)(154,199)(155,200)(156,181)(157,182)(158,183)(159,184)(160,185)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(41,223)(42,224)(43,225)(44,226)(45,227)(46,228)(47,229)(48,230)(49,231)(50,232)(51,233)(52,234)(53,235)(54,236)(55,237)(56,238)(57,239)(58,240)(59,221)(60,222)(61,174)(62,175)(63,176)(64,177)(65,178)(66,179)(67,180)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,169)(77,170)(78,171)(79,172)(80,173)(81,189)(82,190)(83,191)(84,192)(85,193)(86,194)(87,195)(88,196)(89,197)(90,198)(91,199)(92,200)(93,181)(94,182)(95,183)(96,184)(97,185)(98,186)(99,187)(100,188)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160)(109,141)(110,142)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,151)(120,152)(121,212)(122,213)(123,214)(124,215)(125,216)(126,217)(127,218)(128,219)(129,220)(130,201)(131,202)(132,203)(133,204)(134,205)(135,206)(136,207)(137,208)(138,209)(139,210)(140,211), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(93,100)(94,99)(95,98)(96,97)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,148)(142,147)(143,146)(144,145)(149,160)(150,159)(151,158)(152,157)(153,156)(154,155)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174)(181,188)(182,187)(183,186)(184,185)(189,200)(190,199)(191,198)(192,197)(193,196)(194,195)(201,212)(202,211)(203,210)(204,209)(205,208)(206,207)(213,220)(214,219)(215,218)(216,217)(221,222)(223,240)(224,239)(225,238)(226,237)(227,236)(228,235)(229,234)(230,233)(231,232), (1,185,232)(2,186,233)(3,187,234)(4,188,235)(5,189,236)(6,190,237)(7,191,238)(8,192,239)(9,193,240)(10,194,221)(11,195,222)(12,196,223)(13,197,224)(14,198,225)(15,199,226)(16,200,227)(17,181,228)(18,182,229)(19,183,230)(20,184,231)(21,89,42)(22,90,43)(23,91,44)(24,92,45)(25,93,46)(26,94,47)(27,95,48)(28,96,49)(29,97,50)(30,98,51)(31,99,52)(32,100,53)(33,81,54)(34,82,55)(35,83,56)(36,84,57)(37,85,58)(38,86,59)(39,87,60)(40,88,41)(61,145,126)(62,146,127)(63,147,128)(64,148,129)(65,149,130)(66,150,131)(67,151,132)(68,152,133)(69,153,134)(70,154,135)(71,155,136)(72,156,137)(73,157,138)(74,158,139)(75,159,140)(76,160,121)(77,141,122)(78,142,123)(79,143,124)(80,144,125)(101,205,162)(102,206,163)(103,207,164)(104,208,165)(105,209,166)(106,210,167)(107,211,168)(108,212,169)(109,213,170)(110,214,171)(111,215,172)(112,216,173)(113,217,174)(114,218,175)(115,219,176)(116,220,177)(117,201,178)(118,202,179)(119,203,180)(120,204,161), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,204)(22,205)(23,206)(24,207)(25,208)(26,209)(27,210)(28,211)(29,212)(30,213)(31,214)(32,215)(33,216)(34,217)(35,218)(36,219)(37,220)(38,201)(39,202)(40,203)(41,180)(42,161)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,176)(58,177)(59,178)(60,179)(61,237)(62,238)(63,239)(64,240)(65,221)(66,222)(67,223)(68,224)(69,225)(70,226)(71,227)(72,228)(73,229)(74,230)(75,231)(76,232)(77,233)(78,234)(79,235)(80,236)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,111)(141,186)(142,187)(143,188)(144,189)(145,190)(146,191)(147,192)(148,193)(149,194)(150,195)(151,196)(152,197)(153,198)(154,199)(155,200)(156,181)(157,182)(158,183)(159,184)(160,185) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(41,223),(42,224),(43,225),(44,226),(45,227),(46,228),(47,229),(48,230),(49,231),(50,232),(51,233),(52,234),(53,235),(54,236),(55,237),(56,238),(57,239),(58,240),(59,221),(60,222),(61,174),(62,175),(63,176),(64,177),(65,178),(66,179),(67,180),(68,161),(69,162),(70,163),(71,164),(72,165),(73,166),(74,167),(75,168),(76,169),(77,170),(78,171),(79,172),(80,173),(81,189),(82,190),(83,191),(84,192),(85,193),(86,194),(87,195),(88,196),(89,197),(90,198),(91,199),(92,200),(93,181),(94,182),(95,183),(96,184),(97,185),(98,186),(99,187),(100,188),(101,153),(102,154),(103,155),(104,156),(105,157),(106,158),(107,159),(108,160),(109,141),(110,142),(111,143),(112,144),(113,145),(114,146),(115,147),(116,148),(117,149),(118,150),(119,151),(120,152),(121,212),(122,213),(123,214),(124,215),(125,216),(126,217),(127,218),(128,219),(129,220),(130,201),(131,202),(132,203),(133,204),(134,205),(135,206),(136,207),(137,208),(138,209),(139,210),(140,211)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(59,60),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,92),(82,91),(83,90),(84,89),(85,88),(86,87),(93,100),(94,99),(95,98),(96,97),(101,104),(102,103),(105,120),(106,119),(107,118),(108,117),(109,116),(110,115),(111,114),(112,113),(121,130),(122,129),(123,128),(124,127),(125,126),(131,140),(132,139),(133,138),(134,137),(135,136),(141,148),(142,147),(143,146),(144,145),(149,160),(150,159),(151,158),(152,157),(153,156),(154,155),(161,166),(162,165),(163,164),(167,180),(168,179),(169,178),(170,177),(171,176),(172,175),(173,174),(181,188),(182,187),(183,186),(184,185),(189,200),(190,199),(191,198),(192,197),(193,196),(194,195),(201,212),(202,211),(203,210),(204,209),(205,208),(206,207),(213,220),(214,219),(215,218),(216,217),(221,222),(223,240),(224,239),(225,238),(226,237),(227,236),(228,235),(229,234),(230,233),(231,232)], [(1,185,232),(2,186,233),(3,187,234),(4,188,235),(5,189,236),(6,190,237),(7,191,238),(8,192,239),(9,193,240),(10,194,221),(11,195,222),(12,196,223),(13,197,224),(14,198,225),(15,199,226),(16,200,227),(17,181,228),(18,182,229),(19,183,230),(20,184,231),(21,89,42),(22,90,43),(23,91,44),(24,92,45),(25,93,46),(26,94,47),(27,95,48),(28,96,49),(29,97,50),(30,98,51),(31,99,52),(32,100,53),(33,81,54),(34,82,55),(35,83,56),(36,84,57),(37,85,58),(38,86,59),(39,87,60),(40,88,41),(61,145,126),(62,146,127),(63,147,128),(64,148,129),(65,149,130),(66,150,131),(67,151,132),(68,152,133),(69,153,134),(70,154,135),(71,155,136),(72,156,137),(73,157,138),(74,158,139),(75,159,140),(76,160,121),(77,141,122),(78,142,123),(79,143,124),(80,144,125),(101,205,162),(102,206,163),(103,207,164),(104,208,165),(105,209,166),(106,210,167),(107,211,168),(108,212,169),(109,213,170),(110,214,171),(111,215,172),(112,216,173),(113,217,174),(114,218,175),(115,219,176),(116,220,177),(117,201,178),(118,202,179),(119,203,180),(120,204,161)], [(1,121),(2,122),(3,123),(4,124),(5,125),(6,126),(7,127),(8,128),(9,129),(10,130),(11,131),(12,132),(13,133),(14,134),(15,135),(16,136),(17,137),(18,138),(19,139),(20,140),(21,204),(22,205),(23,206),(24,207),(25,208),(26,209),(27,210),(28,211),(29,212),(30,213),(31,214),(32,215),(33,216),(34,217),(35,218),(36,219),(37,220),(38,201),(39,202),(40,203),(41,180),(42,161),(43,162),(44,163),(45,164),(46,165),(47,166),(48,167),(49,168),(50,169),(51,170),(52,171),(53,172),(54,173),(55,174),(56,175),(57,176),(58,177),(59,178),(60,179),(61,237),(62,238),(63,239),(64,240),(65,221),(66,222),(67,223),(68,224),(69,225),(70,226),(71,227),(72,228),(73,229),(74,230),(75,231),(76,232),(77,233),(78,234),(79,235),(80,236),(81,112),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,101),(91,102),(92,103),(93,104),(94,105),(95,106),(96,107),(97,108),(98,109),(99,110),(100,111),(141,186),(142,187),(143,188),(144,189),(145,190),(146,191),(147,192),(148,193),(149,194),(150,195),(151,196),(152,197),(153,198),(154,199),(155,200),(156,181),(157,182),(158,183),(159,184),(160,185)]])
78 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 10A | ··· | 10F | 10G | ··· | 10N | 12A | 12B | 15A | 15B | 20A | ··· | 20H | 20I | ··· | 20P | 30A | ··· | 30F | 60A | ··· | 60H |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 12 | 12 | 15 | 15 | 20 | ··· | 20 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
| size | 1 | 1 | 1 | 1 | 6 | 6 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 30 | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | ··· | 4 | 4 | ··· | 4 |
78 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | - | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D6 | C4○D4 | D10 | D10 | D10 | D10 | C4○D20 | D4⋊2S3 | S3×D5 | C2×S3×D5 | C2×S3×D5 | D20⋊5S3 |
| kernel | C2×D20⋊5S3 | D20⋊5S3 | C2×D5×Dic3 | C2×C15⋊D4 | C6×D20 | S3×C2×C20 | C2×Dic30 | C2×D20 | S3×C2×C4 | D20 | C2×C20 | C22×D5 | C30 | C4×S3 | C2×Dic3 | C2×C12 | C22×S3 | C6 | C10 | C2×C4 | C4 | C22 | C2 |
| # reps | 1 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 2 | 4 | 8 | 2 | 2 | 2 | 16 | 2 | 2 | 4 | 2 | 8 |
Matrix representation of C2×D20⋊5S3 ►in GL6(𝔽61)
| 60 | 0 | 0 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 60 | 0 | 0 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 | 0 | 0 |
| 0 | 0 | 18 | 1 | 0 | 0 |
| 0 | 0 | 60 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 31 | 23 |
| 0 | 0 | 0 | 0 | 51 | 30 |
| 60 | 0 | 0 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 | 0 | 0 |
| 0 | 0 | 18 | 1 | 0 | 0 |
| 0 | 0 | 43 | 43 | 0 | 0 |
| 0 | 0 | 0 | 0 | 31 | 23 |
| 0 | 0 | 0 | 0 | 6 | 30 |
| 1 | 46 | 0 | 0 | 0 | 0 |
| 49 | 59 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 54 | 3 | 0 | 0 | 0 | 0 |
| 45 | 7 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 25 | 52 |
| 0 | 0 | 0 | 0 | 49 | 36 |
G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,18,60,0,0,0,0,1,0,0,0,0,0,0,0,31,51,0,0,0,0,23,30],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,18,43,0,0,0,0,1,43,0,0,0,0,0,0,31,6,0,0,0,0,23,30],[1,49,0,0,0,0,46,59,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[54,45,0,0,0,0,3,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,25,49,0,0,0,0,52,36] >;
C2×D20⋊5S3 in GAP, Magma, Sage, TeX
C_2\times D_{20}\rtimes_5S_3 % in TeX
G:=Group("C2xD20:5S3"); // GroupNames label
G:=SmallGroup(480,1074);
// by ID
G=gap.SmallGroup(480,1074);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,120,675,80,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^20=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^10*c,e*d*e=d^-1>;
// generators/relations