Extensions 1→N→G→Q→1 with N=D5×C3⋊D4 and Q=C2

Direct product G=N×Q with N=D5×C3⋊D4 and Q=C2
dρLabelID
C2×D5×C3⋊D4120C2xD5xC3:D4480,1122

Semidirect products G=N:Q with N=D5×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C3⋊D4)⋊1C2 = D2025D6φ: C2/C1C2 ⊆ Out D5×C3⋊D41204(D5xC3:D4):1C2480,1093
(D5×C3⋊D4)⋊2C2 = S3×D4×D5φ: C2/C1C2 ⊆ Out D5×C3⋊D4608+(D5xC3:D4):2C2480,1097
(D5×C3⋊D4)⋊3C2 = D5×D42S3φ: C2/C1C2 ⊆ Out D5×C3⋊D41208-(D5xC3:D4):3C2480,1098
(D5×C3⋊D4)⋊4C2 = D2013D6φ: C2/C1C2 ⊆ Out D5×C3⋊D41208-(D5xC3:D4):4C2480,1101
(D5×C3⋊D4)⋊5C2 = D2014D6φ: C2/C1C2 ⊆ Out D5×C3⋊D41208+(D5xC3:D4):5C2480,1102
(D5×C3⋊D4)⋊6C2 = C15⋊2+ 1+4φ: C2/C1C2 ⊆ Out D5×C3⋊D41204(D5xC3:D4):6C2480,1125
(D5×C3⋊D4)⋊7C2 = D5×C4○D12φ: trivial image1204(D5xC3:D4):7C2480,1090

Non-split extensions G=N.Q with N=D5×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C3⋊D4).1C2 = F5×C3⋊D4φ: C2/C1C2 ⊆ Out D5×C3⋊D4608(D5xC3:D4).1C2480,1010
(D5×C3⋊D4).2C2 = C3⋊D4⋊F5φ: C2/C1C2 ⊆ Out D5×C3⋊D4608(D5xC3:D4).2C2480,1012

׿
×
𝔽