Copied to
clipboard

G = S3xD4xD5order 480 = 25·3·5

Direct product of S3, D4 and D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xD4xD5, C60:C23, D20:11D6, D12:11D10, D60:7C22, D30:3C23, C30.25C24, Dic15:1C23, (C5xD4):9D6, (C4xD5):7D6, C5:D4:1D6, (C2xC30):C23, (D4xD15):4C2, (C3xD4):9D10, D15:2(C2xD4), (C4xS3):7D10, (S3xD20):4C2, (D5xD12):4C2, C3:D4:1D10, C15:4(C22xD4), C20:D6:4C2, C20:1(C22xS3), (C6xD5):3C23, D6:3(C22xD5), C12:1(C22xD5), D10:D6:2C2, (S3xC10):3C23, (S3xC20):1C22, (C3xD20):7C22, (D5xC12):1C22, (C5xD12):7C22, D10:3(C22xS3), (D4xC15):7C22, (C4xD15):1C22, (C22xD5):11D6, C5:D12:3C22, C3:D20:3C22, C15:D4:3C22, C15:7D4:1C22, C6.25(C23xD5), (C22xS3):10D10, C10.25(S3xC23), D30.C2:9C22, (S3xDic5):9C22, Dic3:1(C22xD5), (C3xDic5):1C23, (D5xDic3):9C22, Dic5:1(C22xS3), (C5xDic3):1C23, (C22xD15):11C22, C3:3(C2xD4xD5), C5:3(C2xS3xD4), C4:1(C2xS3xD5), (C3xD4xD5):4C2, (C4xS3xD5):1C2, (C5xS3xD4):4C2, C22:2(C2xS3xD5), (C3xD5):2(C2xD4), (C5xS3):2(C2xD4), (D5xC3:D4):2C2, (S3xC5:D4):2C2, (D5xC2xC6):7C22, (C22xS3xD5):8C2, (S3xC2xC10):7C22, (C2xS3xD5):12C22, (C2xC6):1(C22xD5), C2.28(C22xS3xD5), (C2xC10):4(C22xS3), (C5xC3:D4):1C22, (C3xC5:D4):1C22, SmallGroup(480,1097)

Series: Derived Chief Lower central Upper central

C1C30 — S3xD4xD5
C1C5C15C30C6xD5C2xS3xD5C22xS3xD5 — S3xD4xD5
C15C30 — S3xD4xD5
C1C2D4

Generators and relations for S3xD4xD5
 G = < a,b,c,d,e,f | a3=b2=c4=d2=e5=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 2892 in 472 conjugacy classes, 122 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, S3, C6, C6, C2xC4, D4, D4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, D6, C2xC6, C2xC6, C15, C22xC4, C2xD4, C24, Dic5, Dic5, C20, C20, D10, D10, D10, C2xC10, C2xC10, C4xS3, C4xS3, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C3xD4, C22xS3, C22xS3, C22xC6, C5xS3, C5xS3, C3xD5, C3xD5, D15, D15, C30, C30, C22xD4, C4xD5, C4xD5, D20, D20, C2xDic5, C5:D4, C5:D4, C2xC20, C5xD4, C5xD4, C22xD5, C22xD5, C22xC10, S3xC2xC4, C2xD12, S3xD4, S3xD4, C2xC3:D4, C6xD4, S3xC23, C5xDic3, C3xDic5, Dic15, C60, S3xD5, S3xD5, C6xD5, C6xD5, C6xD5, S3xC10, S3xC10, S3xC10, D30, D30, D30, C2xC30, C2xC4xD5, C2xD20, D4xD5, D4xD5, C2xC5:D4, D4xC10, C23xD5, C2xS3xD4, D5xDic3, S3xDic5, D30.C2, C15:D4, C3:D20, C5:D12, D5xC12, C3xD20, C3xC5:D4, S3xC20, C5xD12, C5xC3:D4, C4xD15, D60, C15:7D4, D4xC15, C2xS3xD5, C2xS3xD5, C2xS3xD5, D5xC2xC6, S3xC2xC10, C22xD15, C2xD4xD5, C4xS3xD5, D5xD12, S3xD20, C20:D6, D5xC3:D4, S3xC5:D4, D10:D6, C3xD4xD5, C5xS3xD4, D4xD15, C22xS3xD5, S3xD4xD5
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2xD4, C24, D10, C22xS3, C22xD4, C22xD5, S3xD4, S3xC23, S3xD5, D4xD5, C23xD5, C2xS3xD4, C2xS3xD5, C2xD4xD5, C22xS3xD5, S3xD4xD5

Smallest permutation representation of S3xD4xD5
On 60 points
Generators in S60
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 34 19 49)(2 35 20 50)(3 31 16 46)(4 32 17 47)(5 33 18 48)(6 36 21 51)(7 37 22 52)(8 38 23 53)(9 39 24 54)(10 40 25 55)(11 41 26 56)(12 42 27 57)(13 43 28 58)(14 44 29 59)(15 45 30 60)
(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)

G:=sub<Sym(60)| (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,36,21,51)(7,37,22,52)(8,38,23,53)(9,39,24,54)(10,40,25,55)(11,41,26,56)(12,42,27,57)(13,43,28,58)(14,44,29,59)(15,45,30,60), (31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)>;

G:=Group( (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,36,21,51)(7,37,22,52)(8,38,23,53)(9,39,24,54)(10,40,25,55)(11,41,26,56)(12,42,27,57)(13,43,28,58)(14,44,29,59)(15,45,30,60), (31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59) );

G=PermutationGroup([[(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,34,19,49),(2,35,20,50),(3,31,16,46),(4,32,17,47),(5,33,18,48),(6,36,21,51),(7,37,22,52),(8,38,23,53),(9,39,24,54),(10,40,25,55),(11,41,26,56),(12,42,27,57),(13,43,28,58),(14,44,29,59),(15,45,30,60)], [(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O 3 4A4B4C4D5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F10G10H10I10J10K10L10M10N12A12B15A15B20A20B20C20D30A30B30C30D30E30F60A60B
order122222222222222234444556666666101010101010101010101010101012121515202020203030303030306060
size1122335566101015153030226103022244101020202244446666121212124204444121244888888

60 irreducible representations

dim1111111111112222222222222444448
type+++++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D5D6D6D6D6D6D10D10D10D10D10S3xD4S3xD5D4xD5C2xS3xD5C2xS3xD5S3xD4xD5
kernelS3xD4xD5C4xS3xD5D5xD12S3xD20C20:D6D5xC3:D4S3xC5:D4D10:D6C3xD4xD5C5xS3xD4D4xD15C22xS3xD5D4xD5S3xD5S3xD4C4xD5D20C5:D4C5xD4C22xD5C4xS3D12C3:D4C3xD4C22xS3D5D4S3C4C22C1
# reps1111122211121421121222424224242

Matrix representation of S3xD4xD5 in GL6(F61)

0600000
1600000
001000
000100
000010
000001
,
010000
100000
0060000
0006000
000010
000001
,
6000000
0600000
0060000
0006000
0000141
00005560
,
100000
010000
001000
000100
000010
00005560
,
100000
010000
0044100
00166000
000010
000001
,
100000
010000
00606000
000100
000010
000001

G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,55,0,0,0,0,41,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,55,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,44,16,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3xD4xD5 in GAP, Magma, Sage, TeX

S_3\times D_4\times D_5
% in TeX

G:=Group("S3xD4xD5");
// GroupNames label

G:=SmallGroup(480,1097);
// by ID

G=gap.SmallGroup(480,1097);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,185,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=e^5=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<