Extensions 1→N→G→Q→1 with N=C4×D5 and Q=Dic3

Direct product G=N×Q with N=C4×D5 and Q=Dic3
dρLabelID
C4×D5×Dic3240C4xD5xDic3480,467

Semidirect products G=N:Q with N=C4×D5 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1Dic3 = (C4×D5)⋊Dic3φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5):1Dic3480,434
(C4×D5)⋊2Dic3 = D5×C4⋊Dic3φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5):2Dic3480,488
(C4×D5)⋊3Dic3 = (D5×C12)⋊C4φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5):3Dic3480,433
(C4×D5)⋊4Dic3 = C2×C60⋊C4φ: Dic3/C6C2 ⊆ Out C4×D5120(C4xD5):4Dic3480,1064
(C4×D5)⋊5Dic3 = (C2×C12)⋊6F5φ: Dic3/C6C2 ⊆ Out C4×D51204(C4xD5):5Dic3480,1065
(C4×D5)⋊6Dic3 = C2×C4×C3⋊F5φ: Dic3/C6C2 ⊆ Out C4×D5120(C4xD5):6Dic3480,1063

Non-split extensions G=N.Q with N=C4×D5 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C4×D5).1Dic3 = D5×C4.Dic3φ: Dic3/C6C2 ⊆ Out C4×D51204(C4xD5).1Dic3480,358
(C4×D5).2Dic3 = C40.51D6φ: Dic3/C6C2 ⊆ Out C4×D52404(C4xD5).2Dic3480,10
(C4×D5).3Dic3 = C2×C20.32D6φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5).3Dic3480,369
(C4×D5).4Dic3 = C2×C12.F5φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5).4Dic3480,1061
(C4×D5).5Dic3 = C60.59(C2×C4)φ: Dic3/C6C2 ⊆ Out C4×D51204(C4xD5).5Dic3480,1062
(C4×D5).6Dic3 = C24.F5φ: Dic3/C6C2 ⊆ Out C4×D52404(C4xD5).6Dic3480,294
(C4×D5).7Dic3 = C120.C4φ: Dic3/C6C2 ⊆ Out C4×D52404(C4xD5).7Dic3480,295
(C4×D5).8Dic3 = C2×C60.C4φ: Dic3/C6C2 ⊆ Out C4×D5240(C4xD5).8Dic3480,1060
(C4×D5).9Dic3 = D5×C3⋊C16φ: trivial image2404(C4xD5).9Dic3480,7
(C4×D5).10Dic3 = C2×D5×C3⋊C8φ: trivial image240(C4xD5).10Dic3480,357

׿
×
𝔽