Copied to
clipboard

G = D5×C4.Dic3order 480 = 25·3·5

Direct product of D5 and C4.Dic3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C4.Dic3, C60.175C23, C3⋊C821D10, C35(D5×M4(2)), (D5×C12).1C4, (C2×C20).77D6, C12.71(C4×D5), C60.114(C2×C4), (C4×D5).101D6, (C3×D5)⋊3M4(2), C1515(C2×M4(2)), (C4×D5).1Dic3, C60.7C412C2, C4.14(D5×Dic3), C153C825C22, (C2×C12).315D10, (C2×C60).46C22, C30.97(C22×C4), (C6×Dic5).10C4, C20.31(C2×Dic3), C20.32D612C2, C22.6(D5×Dic3), C20.172(C22×S3), D10.19(C2×Dic3), (C2×Dic5).6Dic3, C12.172(C22×D5), (C22×D5).4Dic3, Dic5.11(C2×Dic3), (D5×C12).102C22, C10.15(C22×Dic3), (D5×C3⋊C8)⋊11C2, (C2×C4×D5).1S3, (D5×C2×C6).7C4, C6.78(C2×C4×D5), (D5×C2×C12).1C2, C4.145(C2×S3×D5), C55(C2×C4.Dic3), C2.4(C2×D5×Dic3), (C5×C3⋊C8)⋊21C22, (C2×C6).51(C4×D5), (C2×C30).94(C2×C4), (C6×D5).48(C2×C4), (C2×C4).142(S3×D5), (C5×C4.Dic3)⋊5C2, (C3×Dic5).56(C2×C4), (C2×C10).24(C2×Dic3), SmallGroup(480,358)

Series: Derived Chief Lower central Upper central

C1C30 — D5×C4.Dic3
C1C5C15C30C60D5×C12D5×C3⋊C8 — D5×C4.Dic3
C15C30 — D5×C4.Dic3
C1C4C2×C4

Generators and relations for D5×C4.Dic3
 G = < a,b,c,d,e | a5=b2=c4=1, d6=c2, e2=c2d3, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d5 >

Subgroups: 476 in 136 conjugacy classes, 64 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C3⋊C8, C3⋊C8, C2×C12, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×M4(2), C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C2×C3⋊C8, C4.Dic3, C4.Dic3, C22×C12, C3×Dic5, C60, C6×D5, C6×D5, C2×C30, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×C4×D5, C2×C4.Dic3, C5×C3⋊C8, C153C8, D5×C12, C6×Dic5, C2×C60, D5×C2×C6, D5×M4(2), D5×C3⋊C8, C20.32D6, C5×C4.Dic3, C60.7C4, D5×C2×C12, D5×C4.Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, Dic3, D6, M4(2), C22×C4, D10, C2×Dic3, C22×S3, C2×M4(2), C4×D5, C22×D5, C4.Dic3, C22×Dic3, S3×D5, C2×C4×D5, C2×C4.Dic3, D5×Dic3, C2×S3×D5, D5×M4(2), C2×D5×Dic3, D5×C4.Dic3

Smallest permutation representation of D5×C4.Dic3
On 120 points
Generators in S120
(1 47 36 92 62)(2 48 25 93 63)(3 37 26 94 64)(4 38 27 95 65)(5 39 28 96 66)(6 40 29 85 67)(7 41 30 86 68)(8 42 31 87 69)(9 43 32 88 70)(10 44 33 89 71)(11 45 34 90 72)(12 46 35 91 61)(13 75 99 50 116)(14 76 100 51 117)(15 77 101 52 118)(16 78 102 53 119)(17 79 103 54 120)(18 80 104 55 109)(19 81 105 56 110)(20 82 106 57 111)(21 83 107 58 112)(22 84 108 59 113)(23 73 97 60 114)(24 74 98 49 115)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 61)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 73)(24 74)(37 94)(38 95)(39 96)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 92)(48 93)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)(103 120)(104 109)(105 110)(106 111)(107 112)(108 113)
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 16 19 22)(14 17 20 23)(15 18 21 24)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 46 43 40)(38 47 44 41)(39 48 45 42)(49 52 55 58)(50 53 56 59)(51 54 57 60)(61 70 67 64)(62 71 68 65)(63 72 69 66)(73 76 79 82)(74 77 80 83)(75 78 81 84)(85 94 91 88)(86 95 92 89)(87 96 93 90)(97 100 103 106)(98 101 104 107)(99 102 105 108)(109 112 115 118)(110 113 116 119)(111 114 117 120)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 76 10 73 7 82 4 79)(2 81 11 78 8 75 5 84)(3 74 12 83 9 80 6 77)(13 66 22 63 19 72 16 69)(14 71 23 68 20 65 17 62)(15 64 24 61 21 70 18 67)(25 56 34 53 31 50 28 59)(26 49 35 58 32 55 29 52)(27 54 36 51 33 60 30 57)(37 98 46 107 43 104 40 101)(38 103 47 100 44 97 41 106)(39 108 48 105 45 102 42 99)(85 118 94 115 91 112 88 109)(86 111 95 120 92 117 89 114)(87 116 96 113 93 110 90 119)

G:=sub<Sym(120)| (1,47,36,92,62)(2,48,25,93,63)(3,37,26,94,64)(4,38,27,95,65)(5,39,28,96,66)(6,40,29,85,67)(7,41,30,86,68)(8,42,31,87,69)(9,43,32,88,70)(10,44,33,89,71)(11,45,34,90,72)(12,46,35,91,61)(13,75,99,50,116)(14,76,100,51,117)(15,77,101,52,118)(16,78,102,53,119)(17,79,103,54,120)(18,80,104,55,109)(19,81,105,56,110)(20,82,106,57,111)(21,83,107,58,112)(22,84,108,59,113)(23,73,97,60,114)(24,74,98,49,115), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,61)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,73)(24,74)(37,94)(38,95)(39,96)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,109)(105,110)(106,111)(107,112)(108,113), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,16,19,22)(14,17,20,23)(15,18,21,24)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,70,67,64)(62,71,68,65)(63,72,69,66)(73,76,79,82)(74,77,80,83)(75,78,81,84)(85,94,91,88)(86,95,92,89)(87,96,93,90)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,112,115,118)(110,113,116,119)(111,114,117,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,76,10,73,7,82,4,79)(2,81,11,78,8,75,5,84)(3,74,12,83,9,80,6,77)(13,66,22,63,19,72,16,69)(14,71,23,68,20,65,17,62)(15,64,24,61,21,70,18,67)(25,56,34,53,31,50,28,59)(26,49,35,58,32,55,29,52)(27,54,36,51,33,60,30,57)(37,98,46,107,43,104,40,101)(38,103,47,100,44,97,41,106)(39,108,48,105,45,102,42,99)(85,118,94,115,91,112,88,109)(86,111,95,120,92,117,89,114)(87,116,96,113,93,110,90,119)>;

G:=Group( (1,47,36,92,62)(2,48,25,93,63)(3,37,26,94,64)(4,38,27,95,65)(5,39,28,96,66)(6,40,29,85,67)(7,41,30,86,68)(8,42,31,87,69)(9,43,32,88,70)(10,44,33,89,71)(11,45,34,90,72)(12,46,35,91,61)(13,75,99,50,116)(14,76,100,51,117)(15,77,101,52,118)(16,78,102,53,119)(17,79,103,54,120)(18,80,104,55,109)(19,81,105,56,110)(20,82,106,57,111)(21,83,107,58,112)(22,84,108,59,113)(23,73,97,60,114)(24,74,98,49,115), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,61)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,73)(24,74)(37,94)(38,95)(39,96)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,109)(105,110)(106,111)(107,112)(108,113), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,16,19,22)(14,17,20,23)(15,18,21,24)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,70,67,64)(62,71,68,65)(63,72,69,66)(73,76,79,82)(74,77,80,83)(75,78,81,84)(85,94,91,88)(86,95,92,89)(87,96,93,90)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,112,115,118)(110,113,116,119)(111,114,117,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,76,10,73,7,82,4,79)(2,81,11,78,8,75,5,84)(3,74,12,83,9,80,6,77)(13,66,22,63,19,72,16,69)(14,71,23,68,20,65,17,62)(15,64,24,61,21,70,18,67)(25,56,34,53,31,50,28,59)(26,49,35,58,32,55,29,52)(27,54,36,51,33,60,30,57)(37,98,46,107,43,104,40,101)(38,103,47,100,44,97,41,106)(39,108,48,105,45,102,42,99)(85,118,94,115,91,112,88,109)(86,111,95,120,92,117,89,114)(87,116,96,113,93,110,90,119) );

G=PermutationGroup([[(1,47,36,92,62),(2,48,25,93,63),(3,37,26,94,64),(4,38,27,95,65),(5,39,28,96,66),(6,40,29,85,67),(7,41,30,86,68),(8,42,31,87,69),(9,43,32,88,70),(10,44,33,89,71),(11,45,34,90,72),(12,46,35,91,61),(13,75,99,50,116),(14,76,100,51,117),(15,77,101,52,118),(16,78,102,53,119),(17,79,103,54,120),(18,80,104,55,109),(19,81,105,56,110),(20,82,106,57,111),(21,83,107,58,112),(22,84,108,59,113),(23,73,97,60,114),(24,74,98,49,115)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,61),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,73),(24,74),(37,94),(38,95),(39,96),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,92),(48,93),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119),(103,120),(104,109),(105,110),(106,111),(107,112),(108,113)], [(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,16,19,22),(14,17,20,23),(15,18,21,24),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,46,43,40),(38,47,44,41),(39,48,45,42),(49,52,55,58),(50,53,56,59),(51,54,57,60),(61,70,67,64),(62,71,68,65),(63,72,69,66),(73,76,79,82),(74,77,80,83),(75,78,81,84),(85,94,91,88),(86,95,92,89),(87,96,93,90),(97,100,103,106),(98,101,104,107),(99,102,105,108),(109,112,115,118),(110,113,116,119),(111,114,117,120)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,76,10,73,7,82,4,79),(2,81,11,78,8,75,5,84),(3,74,12,83,9,80,6,77),(13,66,22,63,19,72,16,69),(14,71,23,68,20,65,17,62),(15,64,24,61,21,70,18,67),(25,56,34,53,31,50,28,59),(26,49,35,58,32,55,29,52),(27,54,36,51,33,60,30,57),(37,98,46,107,43,104,40,101),(38,103,47,100,44,97,41,106),(39,108,48,105,45,102,42,99),(85,118,94,115,91,112,88,109),(86,111,95,120,92,117,89,114),(87,116,96,113,93,110,90,119)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C12D12E12F12G12H15A15B20A20B20C20D20E20F30A···30F40A···40H60A···60H
order122222344444455666666688888888101010101212121212121212151520202020202030···3040···4060···60
size11255102112551022222101010106666303030302244222210101010442222444···412···124···4

72 irreducible representations

dim1111111112222222222222444444
type++++++++-+-+-+++-+-
imageC1C2C2C2C2C2C4C4C4S3D5Dic3D6Dic3D6Dic3M4(2)D10D10C4×D5C4×D5C4.Dic3S3×D5D5×Dic3C2×S3×D5D5×Dic3D5×M4(2)D5×C4.Dic3
kernelD5×C4.Dic3D5×C3⋊C8C20.32D6C5×C4.Dic3C60.7C4D5×C2×C12D5×C12C6×Dic5D5×C2×C6C2×C4×D5C4.Dic3C4×D5C4×D5C2×Dic5C2×C20C22×D5C3×D5C3⋊C8C2×C12C12C2×C6D5C2×C4C4C4C22C3C1
# reps1221114221222111442448222248

Matrix representation of D5×C4.Dic3 in GL4(𝔽241) generated by

0100
2405100
0010
0001
,
0100
1000
0010
0001
,
240000
024000
001770
0011864
,
240000
024000
00600
00994
,
177000
017700
00177192
0013964
G:=sub<GL(4,GF(241))| [0,240,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,177,118,0,0,0,64],[240,0,0,0,0,240,0,0,0,0,60,99,0,0,0,4],[177,0,0,0,0,177,0,0,0,0,177,139,0,0,192,64] >;

D5×C4.Dic3 in GAP, Magma, Sage, TeX

D_5\times C_4.{\rm Dic}_3
% in TeX

G:=Group("D5xC4.Dic3");
// GroupNames label

G:=SmallGroup(480,358);
// by ID

G=gap.SmallGroup(480,358);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,64,219,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=1,d^6=c^2,e^2=c^2*d^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^5>;
// generators/relations

׿
×
𝔽