Extensions 1→N→G→Q→1 with N=C3xQ8xD5 and Q=C2

Direct product G=NxQ with N=C3xQ8xD5 and Q=C2
dρLabelID
C6xQ8xD5240C6xQ8xD5480,1142

Semidirect products G=N:Q with N=C3xQ8xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ8xD5):1C2 = D5xQ8:2S3φ: C2/C1C2 ⊆ Out C3xQ8xD51208+(C3xQ8xD5):1C2480,577
(C3xQ8xD5):2C2 = D12.27D10φ: C2/C1C2 ⊆ Out C3xQ8xD52408-(C3xQ8xD5):2C2480,589
(C3xQ8xD5):3C2 = C60.39C23φ: C2/C1C2 ⊆ Out C3xQ8xD52408+(C3xQ8xD5):3C2480,591
(C3xQ8xD5):4C2 = C30.33C24φ: C2/C1C2 ⊆ Out C3xQ8xD52408+(C3xQ8xD5):4C2480,1105
(C3xQ8xD5):5C2 = D12.29D10φ: C2/C1C2 ⊆ Out C3xQ8xD52408-(C3xQ8xD5):5C2480,1106
(C3xQ8xD5):6C2 = S3xQ8xD5φ: C2/C1C2 ⊆ Out C3xQ8xD51208-(C3xQ8xD5):6C2480,1107
(C3xQ8xD5):7C2 = D5xQ8:3S3φ: C2/C1C2 ⊆ Out C3xQ8xD51208+(C3xQ8xD5):7C2480,1108
(C3xQ8xD5):8C2 = C3xD5xSD16φ: C2/C1C2 ⊆ Out C3xQ8xD51204(C3xQ8xD5):8C2480,706
(C3xQ8xD5):9C2 = C3xSD16:D5φ: C2/C1C2 ⊆ Out C3xQ8xD52404(C3xQ8xD5):9C2480,708
(C3xQ8xD5):10C2 = C3xQ16:D5φ: C2/C1C2 ⊆ Out C3xQ8xD52404(C3xQ8xD5):10C2480,711
(C3xQ8xD5):11C2 = C3xQ8.10D10φ: C2/C1C2 ⊆ Out C3xQ8xD52404(C3xQ8xD5):11C2480,1144
(C3xQ8xD5):12C2 = C3xD4.10D10φ: C2/C1C2 ⊆ Out C3xQ8xD52404(C3xQ8xD5):12C2480,1147
(C3xQ8xD5):13C2 = C3xD5xC4oD4φ: trivial image1204(C3xQ8xD5):13C2480,1145

Non-split extensions G=N.Q with N=C3xQ8xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ8xD5).1C2 = D5xC3:Q16φ: C2/C1C2 ⊆ Out C3xQ8xD52408-(C3xQ8xD5).1C2480,583
(C3xQ8xD5).2C2 = Dic10:2Dic3φ: C2/C1C2 ⊆ Out C3xQ8xD51208(C3xQ8xD5).2C2480,314
(C3xQ8xD5).3C2 = Q8xC3:F5φ: C2/C1C2 ⊆ Out C3xQ8xD51208(C3xQ8xD5).3C2480,1069
(C3xQ8xD5).4C2 = C3xD5xQ16φ: C2/C1C2 ⊆ Out C3xQ8xD52404(C3xQ8xD5).4C2480,710
(C3xQ8xD5).5C2 = C3xQ8:F5φ: C2/C1C2 ⊆ Out C3xQ8xD51208(C3xQ8xD5).5C2480,289
(C3xQ8xD5).6C2 = C3xQ8xF5φ: C2/C1C2 ⊆ Out C3xQ8xD51208(C3xQ8xD5).6C2480,1056

׿
x
:
Z
F
o
wr
Q
<