Copied to
clipboard

G = C3xD5xC4oD4order 480 = 25·3·5

Direct product of C3, D5 and C4oD4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3xD5xC4oD4, C30.79C24, C60.214C23, (D4xD5):6C6, D4:7(C6xD5), Q8:7(C6xD5), (Q8xD5):9C6, C4oD20:7C6, D20:10(C2xC6), D4:2D5:6C6, (C3xD4):29D10, (C2xC12):30D10, Q8:2D5:9C6, (C3xQ8):25D10, (C2xC60):23C22, C6.79(C23xD5), Dic10:10(C2xC6), (D4xC15):32C22, (D5xC12):26C22, (C3xD20):40C22, C20.43(C22xC6), C10.11(C23xC6), (Q8xC15):28C22, (C6xD5).57C23, (C2xC30).255C23, (C6xDic5):37C22, D10.17(C22xC6), C12.214(C22xD5), (C3xDic10):37C22, Dic5.17(C22xC6), (C3xDic5).59C23, (C2xC4xD5):6C6, C5:4(C6xC4oD4), (C3xD4xD5):13C2, (C2xC4):7(C6xD5), (C3xQ8xD5):13C2, C4.25(D5xC2xC6), (C2xC20):4(C2xC6), (C5xC4oD4):7C6, (C4xD5):7(C2xC6), (D5xC2xC12):16C2, (C5xD4):8(C2xC6), C15:30(C2xC4oD4), C5:D4:4(C2xC6), (C5xQ8):9(C2xC6), (C15xC4oD4):8C2, C22.2(D5xC2xC6), (C3xC4oD20):17C2, C2.12(D5xC22xC6), (C3xD4:2D5):13C2, (C3xQ8:2D5):13C2, (C2xDic5):10(C2xC6), (C3xC5:D4):19C22, (C2xC10).3(C22xC6), (D5xC2xC6).141C22, (C2xC6).22(C22xD5), (C22xD5).36(C2xC6), SmallGroup(480,1145)

Series: Derived Chief Lower central Upper central

C1C10 — C3xD5xC4oD4
C1C5C10C30C6xD5D5xC2xC6D5xC2xC12 — C3xD5xC4oD4
C5C10 — C3xD5xC4oD4
C1C12C3xC4oD4

Generators and relations for C3xD5xC4oD4
 G = < a,b,c,d,e,f | a3=b5=c2=d4=f2=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=d2e >

Subgroups: 944 in 328 conjugacy classes, 174 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C5, C6, C6, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C12, C12, C12, C2xC6, C2xC6, C15, C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic5, Dic5, C20, C20, D10, D10, D10, C2xC10, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C22xC6, C3xD5, C3xD5, C30, C30, C2xC4oD4, Dic10, C4xD5, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C5xQ8, C22xD5, C22xC12, C6xD4, C6xQ8, C3xC4oD4, C3xC4oD4, C3xDic5, C3xDic5, C60, C60, C6xD5, C6xD5, C6xD5, C2xC30, C2xC4xD5, C4oD20, D4xD5, D4:2D5, Q8xD5, Q8:2D5, C5xC4oD4, C6xC4oD4, C3xDic10, D5xC12, D5xC12, C3xD20, C6xDic5, C3xC5:D4, C2xC60, D4xC15, Q8xC15, D5xC2xC6, D5xC4oD4, D5xC2xC12, C3xC4oD20, C3xD4xD5, C3xD4:2D5, C3xQ8xD5, C3xQ8:2D5, C15xC4oD4, C3xD5xC4oD4
Quotients: C1, C2, C3, C22, C6, C23, D5, C2xC6, C4oD4, C24, D10, C22xC6, C3xD5, C2xC4oD4, C22xD5, C3xC4oD4, C23xC6, C6xD5, C23xD5, C6xC4oD4, D5xC2xC6, D5xC4oD4, D5xC22xC6, C3xD5xC4oD4

Smallest permutation representation of C3xD5xC4oD4
On 120 points
Generators in S120
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 111 101)(92 112 102)(93 113 103)(94 114 104)(95 115 105)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(62 65)(63 64)(67 70)(68 69)(72 75)(73 74)(77 80)(78 79)(82 85)(83 84)(87 90)(88 89)(92 95)(93 94)(97 100)(98 99)(102 105)(103 104)(107 110)(108 109)(112 115)(113 114)(117 120)(118 119)
(1 39 9 34)(2 40 10 35)(3 36 6 31)(4 37 7 32)(5 38 8 33)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 56 26 51)(22 57 27 52)(23 58 28 53)(24 59 29 54)(25 60 30 55)(61 96 66 91)(62 97 67 92)(63 98 68 93)(64 99 69 94)(65 100 70 95)(71 106 76 101)(72 107 77 102)(73 108 78 103)(74 109 79 104)(75 110 80 105)(81 116 86 111)(82 117 87 112)(83 118 88 113)(84 119 89 114)(85 120 90 115)
(1 64 9 69)(2 65 10 70)(3 61 6 66)(4 62 7 67)(5 63 8 68)(11 71 16 76)(12 72 17 77)(13 73 18 78)(14 74 19 79)(15 75 20 80)(21 81 26 86)(22 82 27 87)(23 83 28 88)(24 84 29 89)(25 85 30 90)(31 91 36 96)(32 92 37 97)(33 93 38 98)(34 94 39 99)(35 95 40 100)(41 101 46 106)(42 102 47 107)(43 103 48 108)(44 104 49 109)(45 105 50 110)(51 111 56 116)(52 112 57 117)(53 113 58 118)(54 114 59 119)(55 115 60 120)
(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)

G:=sub<Sym(120)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,39,9,34)(2,40,10,35)(3,36,6,31)(4,37,7,32)(5,38,8,33)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,96,66,91)(62,97,67,92)(63,98,68,93)(64,99,69,94)(65,100,70,95)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,116,86,111)(82,117,87,112)(83,118,88,113)(84,119,89,114)(85,120,90,115), (1,64,9,69)(2,65,10,70)(3,61,6,66)(4,62,7,67)(5,63,8,68)(11,71,16,76)(12,72,17,77)(13,73,18,78)(14,74,19,79)(15,75,20,80)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,101,46,106)(42,102,47,107)(43,103,48,108)(44,104,49,109)(45,105,50,110)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120), (61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)>;

G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,39,9,34)(2,40,10,35)(3,36,6,31)(4,37,7,32)(5,38,8,33)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,96,66,91)(62,97,67,92)(63,98,68,93)(64,99,69,94)(65,100,70,95)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,116,86,111)(82,117,87,112)(83,118,88,113)(84,119,89,114)(85,120,90,115), (1,64,9,69)(2,65,10,70)(3,61,6,66)(4,62,7,67)(5,63,8,68)(11,71,16,76)(12,72,17,77)(13,73,18,78)(14,74,19,79)(15,75,20,80)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,101,46,106)(42,102,47,107)(43,103,48,108)(44,104,49,109)(45,105,50,110)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120), (61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120) );

G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,111,101),(92,112,102),(93,113,103),(94,114,104),(95,115,105),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(62,65),(63,64),(67,70),(68,69),(72,75),(73,74),(77,80),(78,79),(82,85),(83,84),(87,90),(88,89),(92,95),(93,94),(97,100),(98,99),(102,105),(103,104),(107,110),(108,109),(112,115),(113,114),(117,120),(118,119)], [(1,39,9,34),(2,40,10,35),(3,36,6,31),(4,37,7,32),(5,38,8,33),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,56,26,51),(22,57,27,52),(23,58,28,53),(24,59,29,54),(25,60,30,55),(61,96,66,91),(62,97,67,92),(63,98,68,93),(64,99,69,94),(65,100,70,95),(71,106,76,101),(72,107,77,102),(73,108,78,103),(74,109,79,104),(75,110,80,105),(81,116,86,111),(82,117,87,112),(83,118,88,113),(84,119,89,114),(85,120,90,115)], [(1,64,9,69),(2,65,10,70),(3,61,6,66),(4,62,7,67),(5,63,8,68),(11,71,16,76),(12,72,17,77),(13,73,18,78),(14,74,19,79),(15,75,20,80),(21,81,26,86),(22,82,27,87),(23,83,28,88),(24,84,29,89),(25,85,30,90),(31,91,36,96),(32,92,37,97),(33,93,38,98),(34,94,39,99),(35,95,40,100),(41,101,46,106),(42,102,47,107),(43,103,48,108),(44,104,49,109),(45,105,50,110),(51,111,56,116),(52,112,57,117),(53,113,58,118),(54,114,59,119),(55,115,60,120)], [(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120)]])

120 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C···6H6I6J6K6L6M···6R10A10B10C···10H12A12B12C12D12E···12J12K12L12M12N12O···12T15A15B15C15D20A20B20C20D20E···20J30A30B30C30D30E···30P60A···60H60I···60T
order122222222233444444444455666···666666···6101010···101212121212···121212121212···12151515152020202020···203030303030···3060···6060···60
size112225510101011112225510101022112···2555510···10224···411112···2555510···10222222224···422224···42···24···4

120 irreducible representations

dim1111111111111111222222222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D5C4oD4D10D10D10C3xD5C3xC4oD4C6xD5C6xD5C6xD5D5xC4oD4C3xD5xC4oD4
kernelC3xD5xC4oD4D5xC2xC12C3xC4oD20C3xD4xD5C3xD4:2D5C3xQ8xD5C3xQ8:2D5C15xC4oD4D5xC4oD4C2xC4xD5C4oD20D4xD5D4:2D5Q8xD5Q8:2D5C5xC4oD4C3xC4oD4C3xD5C2xC12C3xD4C3xQ8C4oD4D5C2xC4D4Q8C3C1
# reps133331112666622224662481212448

Matrix representation of C3xD5xC4oD4 in GL4(F61) generated by

1000
0100
00470
00047
,
0100
604300
0010
0001
,
0100
1000
0010
0001
,
1000
0100
00500
00050
,
1000
0100
0082
005953
,
1000
0100
0010
005360
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,47,0,0,0,0,47],[0,60,0,0,1,43,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,50,0,0,0,0,50],[1,0,0,0,0,1,0,0,0,0,8,59,0,0,2,53],[1,0,0,0,0,1,0,0,0,0,1,53,0,0,0,60] >;

C3xD5xC4oD4 in GAP, Magma, Sage, TeX

C_3\times D_5\times C_4\circ D_4
% in TeX

G:=Group("C3xD5xC4oD4");
// GroupNames label

G:=SmallGroup(480,1145);
// by ID

G=gap.SmallGroup(480,1145);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-5,268,794,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^5=c^2=d^4=f^2=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d^2*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<