Extensions 1→N→G→Q→1 with N=D5×Dic3 and Q=C4

Direct product G=N×Q with N=D5×Dic3 and Q=C4
dρLabelID
C4×D5×Dic3240C4xD5xDic3480,467

Semidirect products G=N:Q with N=D5×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5×Dic3)⋊1C4 = D5×Dic3⋊C4φ: C4/C2C2 ⊆ Out D5×Dic3240(D5xDic3):1C4480,468
(D5×Dic3)⋊2C4 = (D5×Dic3)⋊C4φ: C4/C2C2 ⊆ Out D5×Dic3240(D5xDic3):2C4480,469
(D5×Dic3)⋊3C4 = D10.19(C4×S3)φ: C4/C2C2 ⊆ Out D5×Dic3240(D5xDic3):3C4480,470
(D5×Dic3)⋊4C4 = C2×Dic3×F5φ: C4/C2C2 ⊆ Out D5×Dic3120(D5xDic3):4C4480,998
(D5×Dic3)⋊5C4 = C22⋊F5.S3φ: C4/C2C2 ⊆ Out D5×Dic31208-(D5xDic3):5C4480,999
(D5×Dic3)⋊6C4 = C2×Dic3⋊F5φ: C4/C2C2 ⊆ Out D5×Dic3120(D5xDic3):6C4480,1001

Non-split extensions G=N.Q with N=D5×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5×Dic3).1C4 = D5×C8⋊S3φ: C4/C2C2 ⊆ Out D5×Dic31204(D5xDic3).1C4480,320
(D5×Dic3).2C4 = S3×C8⋊D5φ: C4/C2C2 ⊆ Out D5×Dic31204(D5xDic3).2C4480,321
(D5×Dic3).3C4 = C40⋊D6φ: C4/C2C2 ⊆ Out D5×Dic31204(D5xDic3).3C4480,322
(D5×Dic3).4C4 = S3×D5⋊C8φ: C4/C2C2 ⊆ Out D5×Dic31208(D5xDic3).4C4480,986
(D5×Dic3).5C4 = S3×C4.F5φ: C4/C2C2 ⊆ Out D5×Dic31208(D5xDic3).5C4480,988
(D5×Dic3).6C4 = D15⋊M4(2)φ: C4/C2C2 ⊆ Out D5×Dic31208(D5xDic3).6C4480,991
(D5×Dic3).7C4 = C5⋊C8⋊D6φ: C4/C2C2 ⊆ Out D5×Dic31208(D5xDic3).7C4480,993
(D5×Dic3).8C4 = S3×C8×D5φ: trivial image1204(D5xDic3).8C4480,319

׿
×
𝔽