Copied to
clipboard

G = D5×C8⋊S3order 480 = 25·3·5

Direct product of D5 and C8⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C8⋊S3, C4016D6, C2426D10, C12022C22, C60.167C23, C3⋊C819D10, (C8×D5)⋊7S3, C812(S3×D5), C52C828D6, D6.5(C4×D5), C40⋊S39C2, C31(D5×M4(2)), (D5×C24)⋊10C2, (C4×D5).99D6, C158(C2×M4(2)), D30.16(C2×C4), (C4×S3).30D10, D10.29(C4×S3), (C3×D5)⋊2M4(2), D6.Dic59C2, D30.C2.1C4, (D5×Dic3).1C4, Dic3.9(C4×D5), (S3×Dic5).1C4, C153C823C22, D30.5C49C2, C30.33(C22×C4), Dic5.34(C4×S3), (S3×C20).30C22, C20.164(C22×S3), Dic15.17(C2×C4), (C4×D15).36C22, (D5×C12).98C22, C12.164(C22×D5), (D5×C3⋊C8)⋊8C2, C6.2(C2×C4×D5), C2.5(C4×S3×D5), C54(C2×C8⋊S3), (C4×S3×D5).6C2, (C2×S3×D5).1C4, C10.33(S3×C2×C4), C4.137(C2×S3×D5), (C5×C8⋊S3)⋊5C2, (C5×C3⋊C8)⋊19C22, (C6×D5).31(C2×C4), (S3×C10).16(C2×C4), (C3×C52C8)⋊33C22, (C3×Dic5).36(C2×C4), (C5×Dic3).17(C2×C4), SmallGroup(480,320)

Series: Derived Chief Lower central Upper central

C1C30 — D5×C8⋊S3
C1C5C15C30C60D5×C12C4×S3×D5 — D5×C8⋊S3
C15C30 — D5×C8⋊S3
C1C4C8

Generators and relations for D5×C8⋊S3
 G = < a,b,c,d,e | a5=b2=c8=d3=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c5, ede=d-1 >

Subgroups: 636 in 136 conjugacy classes, 54 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C3⋊C8, C24, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×M4(2), C52C8, C52C8, C40, C40, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, C8⋊S3, C8⋊S3, C2×C3⋊C8, C2×C24, S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C8×D5, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×C4×D5, C2×C8⋊S3, C5×C3⋊C8, C3×C52C8, C153C8, C120, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, D5×M4(2), D5×C3⋊C8, D6.Dic5, D30.5C4, D5×C24, C5×C8⋊S3, C40⋊S3, C4×S3×D5, D5×C8⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, M4(2), C22×C4, D10, C4×S3, C22×S3, C2×M4(2), C4×D5, C22×D5, C8⋊S3, S3×C2×C4, S3×D5, C2×C4×D5, C2×C8⋊S3, C2×S3×D5, D5×M4(2), C4×S3×D5, D5×C8⋊S3

Smallest permutation representation of D5×C8⋊S3
On 120 points
Generators in S120
(1 28 113 88 99)(2 29 114 81 100)(3 30 115 82 101)(4 31 116 83 102)(5 32 117 84 103)(6 25 118 85 104)(7 26 119 86 97)(8 27 120 87 98)(9 22 39 72 43)(10 23 40 65 44)(11 24 33 66 45)(12 17 34 67 46)(13 18 35 68 47)(14 19 36 69 48)(15 20 37 70 41)(16 21 38 71 42)(49 112 78 95 61)(50 105 79 96 62)(51 106 80 89 63)(52 107 73 90 64)(53 108 74 91 57)(54 109 75 92 58)(55 110 76 93 59)(56 111 77 94 60)
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 97)(8 98)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 65)(24 66)(25 85)(26 86)(27 87)(28 88)(29 81)(30 82)(31 83)(32 84)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 50 11)(2 51 12)(3 52 13)(4 53 14)(5 54 15)(6 55 16)(7 56 9)(8 49 10)(17 29 106)(18 30 107)(19 31 108)(20 32 109)(21 25 110)(22 26 111)(23 27 112)(24 28 105)(33 113 79)(34 114 80)(35 115 73)(36 116 74)(37 117 75)(38 118 76)(39 119 77)(40 120 78)(41 103 58)(42 104 59)(43 97 60)(44 98 61)(45 99 62)(46 100 63)(47 101 64)(48 102 57)(65 87 95)(66 88 96)(67 81 89)(68 82 90)(69 83 91)(70 84 92)(71 85 93)(72 86 94)
(2 6)(4 8)(9 56)(10 53)(11 50)(12 55)(13 52)(14 49)(15 54)(16 51)(17 110)(18 107)(19 112)(20 109)(21 106)(22 111)(23 108)(24 105)(25 29)(27 31)(33 79)(34 76)(35 73)(36 78)(37 75)(38 80)(39 77)(40 74)(41 58)(42 63)(43 60)(44 57)(45 62)(46 59)(47 64)(48 61)(65 91)(66 96)(67 93)(68 90)(69 95)(70 92)(71 89)(72 94)(81 85)(83 87)(98 102)(100 104)(114 118)(116 120)

G:=sub<Sym(120)| (1,28,113,88,99)(2,29,114,81,100)(3,30,115,82,101)(4,31,116,83,102)(5,32,117,84,103)(6,25,118,85,104)(7,26,119,86,97)(8,27,120,87,98)(9,22,39,72,43)(10,23,40,65,44)(11,24,33,66,45)(12,17,34,67,46)(13,18,35,68,47)(14,19,36,69,48)(15,20,37,70,41)(16,21,38,71,42)(49,112,78,95,61)(50,105,79,96,62)(51,106,80,89,63)(52,107,73,90,64)(53,108,74,91,57)(54,109,75,92,58)(55,110,76,93,59)(56,111,77,94,60), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,65)(24,66)(25,85)(26,86)(27,87)(28,88)(29,81)(30,82)(31,83)(32,84)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,50,11)(2,51,12)(3,52,13)(4,53,14)(5,54,15)(6,55,16)(7,56,9)(8,49,10)(17,29,106)(18,30,107)(19,31,108)(20,32,109)(21,25,110)(22,26,111)(23,27,112)(24,28,105)(33,113,79)(34,114,80)(35,115,73)(36,116,74)(37,117,75)(38,118,76)(39,119,77)(40,120,78)(41,103,58)(42,104,59)(43,97,60)(44,98,61)(45,99,62)(46,100,63)(47,101,64)(48,102,57)(65,87,95)(66,88,96)(67,81,89)(68,82,90)(69,83,91)(70,84,92)(71,85,93)(72,86,94), (2,6)(4,8)(9,56)(10,53)(11,50)(12,55)(13,52)(14,49)(15,54)(16,51)(17,110)(18,107)(19,112)(20,109)(21,106)(22,111)(23,108)(24,105)(25,29)(27,31)(33,79)(34,76)(35,73)(36,78)(37,75)(38,80)(39,77)(40,74)(41,58)(42,63)(43,60)(44,57)(45,62)(46,59)(47,64)(48,61)(65,91)(66,96)(67,93)(68,90)(69,95)(70,92)(71,89)(72,94)(81,85)(83,87)(98,102)(100,104)(114,118)(116,120)>;

G:=Group( (1,28,113,88,99)(2,29,114,81,100)(3,30,115,82,101)(4,31,116,83,102)(5,32,117,84,103)(6,25,118,85,104)(7,26,119,86,97)(8,27,120,87,98)(9,22,39,72,43)(10,23,40,65,44)(11,24,33,66,45)(12,17,34,67,46)(13,18,35,68,47)(14,19,36,69,48)(15,20,37,70,41)(16,21,38,71,42)(49,112,78,95,61)(50,105,79,96,62)(51,106,80,89,63)(52,107,73,90,64)(53,108,74,91,57)(54,109,75,92,58)(55,110,76,93,59)(56,111,77,94,60), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,65)(24,66)(25,85)(26,86)(27,87)(28,88)(29,81)(30,82)(31,83)(32,84)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,50,11)(2,51,12)(3,52,13)(4,53,14)(5,54,15)(6,55,16)(7,56,9)(8,49,10)(17,29,106)(18,30,107)(19,31,108)(20,32,109)(21,25,110)(22,26,111)(23,27,112)(24,28,105)(33,113,79)(34,114,80)(35,115,73)(36,116,74)(37,117,75)(38,118,76)(39,119,77)(40,120,78)(41,103,58)(42,104,59)(43,97,60)(44,98,61)(45,99,62)(46,100,63)(47,101,64)(48,102,57)(65,87,95)(66,88,96)(67,81,89)(68,82,90)(69,83,91)(70,84,92)(71,85,93)(72,86,94), (2,6)(4,8)(9,56)(10,53)(11,50)(12,55)(13,52)(14,49)(15,54)(16,51)(17,110)(18,107)(19,112)(20,109)(21,106)(22,111)(23,108)(24,105)(25,29)(27,31)(33,79)(34,76)(35,73)(36,78)(37,75)(38,80)(39,77)(40,74)(41,58)(42,63)(43,60)(44,57)(45,62)(46,59)(47,64)(48,61)(65,91)(66,96)(67,93)(68,90)(69,95)(70,92)(71,89)(72,94)(81,85)(83,87)(98,102)(100,104)(114,118)(116,120) );

G=PermutationGroup([[(1,28,113,88,99),(2,29,114,81,100),(3,30,115,82,101),(4,31,116,83,102),(5,32,117,84,103),(6,25,118,85,104),(7,26,119,86,97),(8,27,120,87,98),(9,22,39,72,43),(10,23,40,65,44),(11,24,33,66,45),(12,17,34,67,46),(13,18,35,68,47),(14,19,36,69,48),(15,20,37,70,41),(16,21,38,71,42),(49,112,78,95,61),(50,105,79,96,62),(51,106,80,89,63),(52,107,73,90,64),(53,108,74,91,57),(54,109,75,92,58),(55,110,76,93,59),(56,111,77,94,60)], [(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,97),(8,98),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,65),(24,66),(25,85),(26,86),(27,87),(28,88),(29,81),(30,82),(31,83),(32,84),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,50,11),(2,51,12),(3,52,13),(4,53,14),(5,54,15),(6,55,16),(7,56,9),(8,49,10),(17,29,106),(18,30,107),(19,31,108),(20,32,109),(21,25,110),(22,26,111),(23,27,112),(24,28,105),(33,113,79),(34,114,80),(35,115,73),(36,116,74),(37,117,75),(38,118,76),(39,119,77),(40,120,78),(41,103,58),(42,104,59),(43,97,60),(44,98,61),(45,99,62),(46,100,63),(47,101,64),(48,102,57),(65,87,95),(66,88,96),(67,81,89),(68,82,90),(69,83,91),(70,84,92),(71,85,93),(72,86,94)], [(2,6),(4,8),(9,56),(10,53),(11,50),(12,55),(13,52),(14,49),(15,54),(16,51),(17,110),(18,107),(19,112),(20,109),(21,106),(22,111),(23,108),(24,105),(25,29),(27,31),(33,79),(34,76),(35,73),(36,78),(37,75),(38,80),(39,77),(40,74),(41,58),(42,63),(43,60),(44,57),(45,62),(46,59),(47,64),(48,61),(65,91),(66,96),(67,93),(68,90),(69,95),(70,92),(71,89),(72,94),(81,85),(83,87),(98,102),(100,104),(114,118),(116,120)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B6C8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C12D15A15B20A20B20C20D20E20F24A24B24C24D24E24F24G24H30A30B40A40B40C40D40E40F40G40H60A60B60C60D120A···120H
order122222344444455666888888881010101012121212151520202020202024242424242424243030404040404040404060606060120···120
size115563021155630222101022661010303022121222101044222212122222101010104444441212121244444···4

72 irreducible representations

dim1111111111112222222222222244444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D5D6D6D6M4(2)D10D10D10C4×S3C4×S3C4×D5C4×D5C8⋊S3S3×D5C2×S3×D5D5×M4(2)C4×S3×D5D5×C8⋊S3
kernelD5×C8⋊S3D5×C3⋊C8D6.Dic5D30.5C4D5×C24C5×C8⋊S3C40⋊S3C4×S3×D5D5×Dic3S3×Dic5D30.C2C2×S3×D5C8×D5C8⋊S3C52C8C40C4×D5C3×D5C3⋊C8C24C4×S3Dic5D10Dic3D6D5C8C4C3C2C1
# reps1111111122221211142222244822448

Matrix representation of D5×C8⋊S3 in GL6(𝔽241)

5110000
24000000
001000
000100
000010
000001
,
1510000
02400000
001000
000100
000010
000001
,
100000
010000
001000
000100
000064239
000088177
,
100000
010000
000100
0024024000
000010
000001
,
100000
010000
001000
0024024000
000010
000064240

G:=sub<GL(6,GF(241))| [51,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,51,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,88,0,0,0,0,239,177],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,1,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,0,0,0,1,64,0,0,0,0,0,240] >;

D5×C8⋊S3 in GAP, Magma, Sage, TeX

D_5\times C_8\rtimes S_3
% in TeX

G:=Group("D5xC8:S3");
// GroupNames label

G:=SmallGroup(480,320);
// by ID

G=gap.SmallGroup(480,320);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,58,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^8=d^3=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^5,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽