Extensions 1→N→G→Q→1 with N=C3×D5 and Q=D8

Direct product G=N×Q with N=C3×D5 and Q=D8
dρLabelID
C3×D5×D81204C3xD5xD8480,703

Semidirect products G=N:Q with N=C3×D5 and Q=D8
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊1D8 = D5×D24φ: D8/C8C2 ⊆ Out C3×D51204+(C3xD5):1D8480,324
(C3×D5)⋊2D8 = D5×D4⋊S3φ: D8/D4C2 ⊆ Out C3×D51208+(C3xD5):2D8480,553

Non-split extensions G=N.Q with N=C3×D5 and Q=D8
extensionφ:Q→Out NdρLabelID
(C3×D5).1D8 = D60⋊C4φ: D8/C4C22 ⊆ Out C3×D51208+(C3xD5).1D8480,227
(C3×D5).2D8 = D12⋊F5φ: D8/C4C22 ⊆ Out C3×D51208+(C3xD5).2D8480,228
(C3×D5).3D8 = Dic5.4Dic6φ: D8/C4C22 ⊆ Out C3×D51208(C3xD5).3D8480,236
(C3×D5).4D8 = D5.D24φ: D8/C8C2 ⊆ Out C3×D51204(C3xD5).4D8480,299
(C3×D5).5D8 = C3×D5.D8φ: D8/C8C2 ⊆ Out C3×D51204(C3xD5).5D8480,274
(C3×D5).6D8 = D20⋊Dic3φ: D8/D4C2 ⊆ Out C3×D51208(C3xD5).6D8480,312
(C3×D5).7D8 = C3×D20⋊C4φ: D8/D4C2 ⊆ Out C3×D51208(C3xD5).7D8480,287

׿
×
𝔽