Copied to
clipboard

G = D5.D24order 480 = 25·3·5

The non-split extension by D5 of D24 acting via D24/C24=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C241F5, C1201C4, D5.1D24, C401Dic3, D10.9D12, D5.1Dic12, Dic5.9Dic6, C81(C3⋊F5), C5⋊(C241C4), C31(D5.D8), (C3×D5).4D8, (C8×D5).3S3, C152(C2.D8), C6.2(C4⋊F5), C30.9(C4⋊C4), C60.48(C2×C4), (C4×D5).87D6, (C6×D5).52D4, (D5×C24).5C2, C52C86Dic3, C12.48(C2×F5), (C3×D5).4Q16, C60⋊C4.8C2, C20.9(C2×Dic3), C2.5(C60⋊C4), C10.2(C4⋊Dic3), (C3×Dic5).10Q8, (D5×C12).112C22, C4.9(C2×C3⋊F5), (C3×C52C8)⋊10C4, SmallGroup(480,299)

Series: Derived Chief Lower central Upper central

C1C60 — D5.D24
C1C5C15C30C6×D5D5×C12C60⋊C4 — D5.D24
C15C30C60 — D5.D24
C1C2C4C8

Generators and relations for D5.D24
 G = < a,b,c,d | a5=b2=c24=1, d2=a-1b, bab=a-1, ac=ca, dad-1=a2, bc=cb, dbd-1=ab, dcd-1=c-1 >

Subgroups: 460 in 72 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, Dic5, C20, F5, D10, C24, C24, C2×Dic3, C2×C12, C3×D5, C30, C2.D8, C52C8, C40, C4×D5, C2×F5, C4⋊Dic3, C2×C24, C3×Dic5, C60, C3⋊F5, C6×D5, C8×D5, C4⋊F5, C241C4, C3×C52C8, C120, D5×C12, C2×C3⋊F5, D5.D8, D5×C24, C60⋊C4, D5.D24
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, D8, Q16, F5, Dic6, D12, C2×Dic3, C2.D8, C2×F5, D24, Dic12, C4⋊Dic3, C3⋊F5, C4⋊F5, C241C4, C2×C3⋊F5, D5.D8, C60⋊C4, D5.D24

Smallest permutation representation of D5.D24
On 120 points
Generators in S120
(1 77 118 32 49)(2 78 119 33 50)(3 79 120 34 51)(4 80 97 35 52)(5 81 98 36 53)(6 82 99 37 54)(7 83 100 38 55)(8 84 101 39 56)(9 85 102 40 57)(10 86 103 41 58)(11 87 104 42 59)(12 88 105 43 60)(13 89 106 44 61)(14 90 107 45 62)(15 91 108 46 63)(16 92 109 47 64)(17 93 110 48 65)(18 94 111 25 66)(19 95 112 26 67)(20 96 113 27 68)(21 73 114 28 69)(22 74 115 29 70)(23 75 116 30 71)(24 76 117 31 72)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 94)(26 95)(27 96)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 92)(48 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)(25 70 111 74)(26 69 112 73)(27 68 113 96)(28 67 114 95)(29 66 115 94)(30 65 116 93)(31 64 117 92)(32 63 118 91)(33 62 119 90)(34 61 120 89)(35 60 97 88)(36 59 98 87)(37 58 99 86)(38 57 100 85)(39 56 101 84)(40 55 102 83)(41 54 103 82)(42 53 104 81)(43 52 105 80)(44 51 106 79)(45 50 107 78)(46 49 108 77)(47 72 109 76)(48 71 110 75)

G:=sub<Sym(120)| (1,77,118,32,49)(2,78,119,33,50)(3,79,120,34,51)(4,80,97,35,52)(5,81,98,36,53)(6,82,99,37,54)(7,83,100,38,55)(8,84,101,39,56)(9,85,102,40,57)(10,86,103,41,58)(11,87,104,42,59)(12,88,105,43,60)(13,89,106,44,61)(14,90,107,45,62)(15,91,108,46,63)(16,92,109,47,64)(17,93,110,48,65)(18,94,111,25,66)(19,95,112,26,67)(20,96,113,27,68)(21,73,114,28,69)(22,74,115,29,70)(23,75,116,30,71)(24,76,117,31,72), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,94)(26,95)(27,96)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,70,111,74)(26,69,112,73)(27,68,113,96)(28,67,114,95)(29,66,115,94)(30,65,116,93)(31,64,117,92)(32,63,118,91)(33,62,119,90)(34,61,120,89)(35,60,97,88)(36,59,98,87)(37,58,99,86)(38,57,100,85)(39,56,101,84)(40,55,102,83)(41,54,103,82)(42,53,104,81)(43,52,105,80)(44,51,106,79)(45,50,107,78)(46,49,108,77)(47,72,109,76)(48,71,110,75)>;

G:=Group( (1,77,118,32,49)(2,78,119,33,50)(3,79,120,34,51)(4,80,97,35,52)(5,81,98,36,53)(6,82,99,37,54)(7,83,100,38,55)(8,84,101,39,56)(9,85,102,40,57)(10,86,103,41,58)(11,87,104,42,59)(12,88,105,43,60)(13,89,106,44,61)(14,90,107,45,62)(15,91,108,46,63)(16,92,109,47,64)(17,93,110,48,65)(18,94,111,25,66)(19,95,112,26,67)(20,96,113,27,68)(21,73,114,28,69)(22,74,115,29,70)(23,75,116,30,71)(24,76,117,31,72), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,94)(26,95)(27,96)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,70,111,74)(26,69,112,73)(27,68,113,96)(28,67,114,95)(29,66,115,94)(30,65,116,93)(31,64,117,92)(32,63,118,91)(33,62,119,90)(34,61,120,89)(35,60,97,88)(36,59,98,87)(37,58,99,86)(38,57,100,85)(39,56,101,84)(40,55,102,83)(41,54,103,82)(42,53,104,81)(43,52,105,80)(44,51,106,79)(45,50,107,78)(46,49,108,77)(47,72,109,76)(48,71,110,75) );

G=PermutationGroup([[(1,77,118,32,49),(2,78,119,33,50),(3,79,120,34,51),(4,80,97,35,52),(5,81,98,36,53),(6,82,99,37,54),(7,83,100,38,55),(8,84,101,39,56),(9,85,102,40,57),(10,86,103,41,58),(11,87,104,42,59),(12,88,105,43,60),(13,89,106,44,61),(14,90,107,45,62),(15,91,108,46,63),(16,92,109,47,64),(17,93,110,48,65),(18,94,111,25,66),(19,95,112,26,67),(20,96,113,27,68),(21,73,114,28,69),(22,74,115,29,70),(23,75,116,30,71),(24,76,117,31,72)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,94),(26,95),(27,96),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,92),(48,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21),(25,70,111,74),(26,69,112,73),(27,68,113,96),(28,67,114,95),(29,66,115,94),(30,65,116,93),(31,64,117,92),(32,63,118,91),(33,62,119,90),(34,61,120,89),(35,60,97,88),(36,59,98,87),(37,58,99,86),(38,57,100,85),(39,56,101,84),(40,55,102,83),(41,54,103,82),(42,53,104,81),(43,52,105,80),(44,51,106,79),(45,50,107,78),(46,49,108,77),(47,72,109,76),(48,71,110,75)]])

54 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B12C12D15A15B20A20B24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order1222344444456668888101212121215152020242424242424242430304040404060606060120···120
size11552210606060604210102210104221010444422221010101044444444444···4

54 irreducible representations

dim1111122222222222244444444
type++++-+--++--++-++
imageC1C2C2C4C4S3Q8D4Dic3Dic3D6D8Q16Dic6D12D24Dic12F5C2×F5C3⋊F5C4⋊F5C2×C3⋊F5D5.D8C60⋊C4D5.D24
kernelD5.D24D5×C24C60⋊C4C3×C52C8C120C8×D5C3×Dic5C6×D5C52C8C40C4×D5C3×D5C3×D5Dic5D10D5D5C24C12C8C6C4C3C2C1
# reps1122211111122224411222448

Matrix representation of D5.D24 in GL8(𝔽241)

10000000
01000000
00100000
00010000
00000100
00000010
00000001
0000240240240240
,
2400000000
0240000000
0024000000
0002400000
00000100
00001000
0000240240240240
00000001
,
145175000000
10474000000
0024010000
0024000000
00002240207207
00003417340
00000341734
00002072070224
,
144143000000
3797000000
0017700000
00177640000
0000240000
0000002400
00001111
0000024000

G:=sub<GL(8,GF(241))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,1,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,240,1],[145,104,0,0,0,0,0,0,175,74,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,224,34,0,207,0,0,0,0,0,17,34,207,0,0,0,0,207,34,17,0,0,0,0,0,207,0,34,224],[144,37,0,0,0,0,0,0,143,97,0,0,0,0,0,0,0,0,177,177,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,240,0,1,0,0,0,0,0,0,0,1,240,0,0,0,0,0,240,1,0,0,0,0,0,0,0,1,0] >;

D5.D24 in GAP, Magma, Sage, TeX

D_5.D_{24}
% in TeX

G:=Group("D5.D24");
// GroupNames label

G:=SmallGroup(480,299);
// by ID

G=gap.SmallGroup(480,299);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,176,675,80,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^24=1,d^2=a^-1*b,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^2,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽