Extensions 1→N→G→Q→1 with N=C10×S4 and Q=C2

Direct product G=N×Q with N=C10×S4 and Q=C2
dρLabelID
C2×C10×S460C2xC10xS4480,1198

Semidirect products G=N:Q with N=C10×S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×S4)⋊1C2 = Dic5⋊S4φ: C2/C1C2 ⊆ Out C10×S4606(C10xS4):1C2480,978
(C10×S4)⋊2C2 = D10⋊S4φ: C2/C1C2 ⊆ Out C10×S4606(C10xS4):2C2480,980
(C10×S4)⋊3C2 = C2×D5×S4φ: C2/C1C2 ⊆ Out C10×S4306+(C10xS4):3C2480,1193
(C10×S4)⋊4C2 = C5×C4⋊S4φ: C2/C1C2 ⊆ Out C10×S4606(C10xS4):4C2480,1015
(C10×S4)⋊5C2 = C5×A4⋊D4φ: C2/C1C2 ⊆ Out C10×S4606(C10xS4):5C2480,1023

Non-split extensions G=N.Q with N=C10×S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×S4).C2 = Dic5×S4φ: C2/C1C2 ⊆ Out C10×S4606-(C10xS4).C2480,976
(C10×S4).2C2 = C20×S4φ: trivial image603(C10xS4).2C2480,1014

׿
×
𝔽