Copied to
clipboard

G = D10:S4order 480 = 25·3·5

1st semidirect product of D10 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: D10:1S4, (C5xA4):2D4, (C2xS4):2D5, (C10xS4):2C2, C2.14(D5xS4), A4:2(C5:D4), C5:2(A4:D4), C10.14(C2xS4), A4:Dic5:4C2, (C2xA4).6D10, C22:(C15:D4), (C23xD5):1S3, C23.6(S3xD5), (C22xC10).6D6, (C10xA4).6C22, (C2xD5xA4):1C2, (C2xC10):1(C3:D4), SmallGroup(480,980)

Series: Derived Chief Lower central Upper central

C1C22C10xA4 — D10:S4
C1C22C2xC10C5xA4C10xA4C2xD5xA4 — D10:S4
C5xA4C10xA4 — D10:S4
C1C2

Generators and relations for D10:S4
 G = < a,b,c,d,e,f | a10=b2=c2=d2=e3=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a5b, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 1012 in 124 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, D4, C23, C23, D5, C10, C10, Dic3, A4, D6, C2xC6, C15, C22:C4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C3:D4, S4, C2xA4, C2xA4, C5xS3, C3xD5, C30, C22wrC2, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xC10, C22xC10, A4:C4, C2xS4, C22xA4, Dic15, C5xA4, C6xD5, S3xC10, D10:C4, C23.D5, C2xC5:D4, D4xC10, C23xD5, A4:D4, C15:D4, C5xS4, D5xA4, C10xA4, C23:D10, A4:Dic5, C10xS4, C2xD5xA4, D10:S4
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, C3:D4, S4, C5:D4, C2xS4, S3xD5, A4:D4, C15:D4, D5xS4, D10:S4

Smallest permutation representation of D10:S4
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 40)(8 39)(9 38)(10 37)(11 48)(12 47)(13 46)(14 45)(15 44)(16 43)(17 42)(18 41)(19 50)(20 49)(21 58)(22 57)(23 56)(24 55)(25 54)(26 53)(27 52)(28 51)(29 60)(30 59)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 13 23)(2 14 24)(3 15 25)(4 16 26)(5 17 27)(6 18 28)(7 19 29)(8 20 30)(9 11 21)(10 12 22)(31 41 51)(32 42 52)(33 43 53)(34 44 54)(35 45 55)(36 46 56)(37 47 57)(38 48 58)(39 49 59)(40 50 60)
(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 56)(42 57)(43 58)(44 59)(45 60)(46 51)(47 52)(48 53)(49 54)(50 55)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,40)(8,39)(9,38)(10,37)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,50)(20,49)(21,58)(22,57)(23,56)(24,55)(25,54)(26,53)(27,52)(28,51)(29,60)(30,59), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,13,23)(2,14,24)(3,15,25)(4,16,26)(5,17,27)(6,18,28)(7,19,29)(8,20,30)(9,11,21)(10,12,22)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,40)(8,39)(9,38)(10,37)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,50)(20,49)(21,58)(22,57)(23,56)(24,55)(25,54)(26,53)(27,52)(28,51)(29,60)(30,59), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,13,23)(2,14,24)(3,15,25)(4,16,26)(5,17,27)(6,18,28)(7,19,29)(8,20,30)(9,11,21)(10,12,22)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,40),(8,39),(9,38),(10,37),(11,48),(12,47),(13,46),(14,45),(15,44),(16,43),(17,42),(18,41),(19,50),(20,49),(21,58),(22,57),(23,56),(24,55),(25,54),(26,53),(27,52),(28,51),(29,60),(30,59)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,13,23),(2,14,24),(3,15,25),(4,16,26),(5,17,27),(6,18,28),(7,19,29),(8,20,30),(9,11,21),(10,12,22),(31,41,51),(32,42,52),(33,43,53),(34,44,54),(35,45,55),(36,46,56),(37,47,57),(38,48,58),(39,49,59),(40,50,60)], [(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,56),(42,57),(43,58),(44,59),(45,60),(46,51),(47,52),(48,53),(49,54),(50,55)]])

34 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C5A5B6A6B6C10A10B10C10D10E10F10G10H10I10J15A15B20A20B20C20D30A30B
order1222222344455666101010101010101010101515202020203030
size113310123081260602284040226666121212121616121212121616

34 irreducible representations

dim111122222223344666
type++++++++++++-++
imageC1C2C2C2S3D4D5D6D10C3:D4C5:D4S4C2xS4S3xD5C15:D4A4:D4D5xS4D10:S4
kernelD10:S4A4:Dic5C10xS4C2xD5xA4C23xD5C5xA4C2xS4C22xC10C2xA4C2xC10A4D10C10C23C22C5C2C1
# reps111111212242222144

Matrix representation of D10:S4 in GL5(F61)

30000
2341000
00100
00010
00001
,
754000
3354000
00100
00010
00001
,
10000
01000
006000
006001
006010
,
10000
01000
000160
001060
000060
,
10000
01000
00010
00001
00100
,
600000
591000
000600
006000
000060

G:=sub<GL(5,GF(61))| [3,23,0,0,0,0,41,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[7,33,0,0,0,54,54,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[60,59,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,60] >;

D10:S4 in GAP, Magma, Sage, TeX

D_{10}\rtimes S_4
% in TeX

G:=Group("D10:S4");
// GroupNames label

G:=SmallGroup(480,980);
// by ID

G=gap.SmallGroup(480,980);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,85,234,3364,5052,1286,2953,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^10=b^2=c^2=d^2=e^3=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^5*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<