Copied to
clipboard

G = C2xD5xS4order 480 = 25·3·5

Direct product of C2, D5 and S4

direct product, non-abelian, soluble, monomial

Aliases: C2xD5xS4, C5:S4:C22, C23:(S3xD5), C10:1(C2xS4), (C5xS4):C22, (C5xA4):C23, C5:1(C22xS4), (D5xA4):C22, (C22xD5):D6, (C22xC10):D6, (C10xS4):3C2, (C2xA4):1D10, (C10xA4):C22, A4:1(C22xD5), (C23xD5):3S3, C22:(C2xS3xD5), (C2xC5:S4):5C2, (C2xD5xA4):3C2, (C2xC10):(C22xS3), SmallGroup(480,1193)

Series: Derived Chief Lower central Upper central

C1C22C5xA4 — C2xD5xS4
C1C22C2xC10C5xA4D5xA4D5xS4 — C2xD5xS4
C5xA4 — C2xD5xS4
C1C2

Generators and relations for C2xD5xS4
 G = < a,b,c,d,e,f,g | a2=b5=c2=d2=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, cbc=b-1, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=f-1 >

Subgroups: 2128 in 262 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, D4, C23, C23, D5, D5, C10, C10, A4, D6, C2xC6, C15, C22xC4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, S4, S4, C2xA4, C2xA4, C22xS3, C5xS3, C3xD5, D15, C30, C22xD4, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xD5, C22xC10, C22xC10, C2xS4, C2xS4, C22xA4, S3xD5, C5xA4, C6xD5, S3xC10, D30, C2xC4xD5, C2xD20, D4xD5, C2xC5:D4, D4xC10, C23xD5, C23xD5, C22xS4, C5xS4, C5:S4, D5xA4, C2xS3xD5, C10xA4, C2xD4xD5, D5xS4, C10xS4, C2xC5:S4, C2xD5xA4, C2xD5xS4
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, S4, C22xS3, C22xD5, C2xS4, S3xD5, C22xS4, C2xS3xD5, D5xS4, C2xD5xS4

Permutation representations of C2xD5xS4
On 30 points - transitive group 30T109
Generators in S30
(1 13)(2 14)(3 15)(4 11)(5 12)(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(6 9)(7 8)(11 14)(12 13)(16 17)(18 20)(21 24)(22 23)(26 27)(28 30)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 17 27)(2 18 28)(3 19 29)(4 20 30)(5 16 26)(6 11 21)(7 12 22)(8 13 23)(9 14 24)(10 15 25)
(6 21)(7 22)(8 23)(9 24)(10 25)(16 26)(17 27)(18 28)(19 29)(20 30)

G:=sub<Sym(30)| (1,13)(2,14)(3,15)(4,11)(5,12)(6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30)>;

G:=Group( (1,13)(2,14)(3,15)(4,11)(5,12)(6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,11),(5,12),(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(6,9),(7,8),(11,14),(12,13),(16,17),(18,20),(21,24),(22,23),(26,27),(28,30)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,17,27),(2,18,28),(3,19,29),(4,20,30),(5,16,26),(6,11,21),(7,12,22),(8,13,23),(9,14,24),(10,15,25)], [(6,21),(7,22),(8,23),(9,24),(10,25),(16,26),(17,27),(18,28),(19,29),(20,30)]])

G:=TransitiveGroup(30,109);

40 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D5A5B6A6B6C10A10B10C10D10E10F10G10H10I10J15A15B20A20B20C20D30A30B
order1222222222223444455666101010101010101010101515202020203030
size113355661515303086630302284040226666121212121616121212121616

40 irreducible representations

dim111112222223334466
type++++++++++++++++++
imageC1C2C2C2C2S3D5D6D6D10D10S4C2xS4C2xS4S3xD5C2xS3xD5D5xS4C2xD5xS4
kernelC2xD5xS4D5xS4C10xS4C2xC5:S4C2xD5xA4C23xD5C2xS4C22xD5C22xC10S4C2xA4D10D5C10C23C22C2C1
# reps141111221422422244

Matrix representation of C2xD5xS4 in GL5(F61)

600000
060000
006000
000600
000060
,
01000
6017000
00100
00010
00001
,
060000
600000
00100
00010
00001
,
10000
01000
006000
000600
00001
,
10000
01000
00100
000600
000060
,
10000
01000
00001
00100
00010
,
10000
01000
00100
00001
00010

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[0,60,0,0,0,1,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,60,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C2xD5xS4 in GAP, Magma, Sage, TeX

C_2\times D_5\times S_4
% in TeX

G:=Group("C2xD5xS4");
// GroupNames label

G:=SmallGroup(480,1193);
// by ID

G=gap.SmallGroup(480,1193);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,234,3364,5052,1286,2953,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^5=c^2=d^2=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=f^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<