Extensions 1→N→G→Q→1 with N=C3xHe3 and Q=C6

Direct product G=NxQ with N=C3xHe3 and Q=C6
dρLabelID
C3xC6xHe3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C3xHe3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xHe3):1C6 = C3.C3wrS3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3):1C6486,4
(C3xHe3):2C6 = C34:C6φ: C6/C1C6 ⊆ Out C3xHe3186(C3xHe3):2C6486,102
(C3xHe3):3C6 = C34:S3φ: C6/C1C6 ⊆ Out C3xHe327(C3xHe3):3C6486,103
(C3xHe3):4C6 = C3xC3wrS3φ: C6/C1C6 ⊆ Out C3xHe327(C3xHe3):4C6486,115
(C3xHe3):5C6 = S3xC3wrC3φ: C6/C1C6 ⊆ Out C3xHe3186(C3xHe3):5C6486,117
(C3xHe3):6C6 = S3xHe3:C3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3):6C6486,123
(C3xHe3):7C6 = C3wrC3:C6φ: C6/C1C6 ⊆ Out C3xHe3279(C3xHe3):7C6486,126
(C3xHe3):8C6 = (C3xHe3):C6φ: C6/C1C6 ⊆ Out C3xHe32718+(C3xHe3):8C6486,127
(C3xHe3):9C6 = C34:3S3φ: C6/C1C6 ⊆ Out C3xHe3186(C3xHe3):9C6486,145
(C3xHe3):10C6 = C34:5S3φ: C6/C1C6 ⊆ Out C3xHe3186(C3xHe3):10C6486,166
(C3xHe3):11C6 = 3+ 1+4:C2φ: C6/C1C6 ⊆ Out C3xHe32718+(C3xHe3):11C6486,236
(C3xHe3):12C6 = 3+ 1+4:2C2φ: C6/C1C6 ⊆ Out C3xHe3279(C3xHe3):12C6486,237
(C3xHe3):13C6 = C2xC32.24He3φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3):13C6486,63
(C3xHe3):14C6 = C2xC32:He3φ: C6/C2C3 ⊆ Out C3xHe354(C3xHe3):14C6486,196
(C3xHe3):15C6 = C6xC3wrC3φ: C6/C2C3 ⊆ Out C3xHe354(C3xHe3):15C6486,210
(C3xHe3):16C6 = C6xHe3:C3φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3):16C6486,212
(C3xHe3):17C6 = C2xC33:C32φ: C6/C2C3 ⊆ Out C3xHe3549(C3xHe3):17C6486,215
(C3xHe3):18C6 = C2xHe3:C32φ: C6/C2C3 ⊆ Out C3xHe3549(C3xHe3):18C6486,217
(C3xHe3):19C6 = C2x3+ 1+4φ: C6/C2C3 ⊆ Out C3xHe3549(C3xHe3):19C6486,254
(C3xHe3):20C6 = C32xC32:C6φ: C6/C3C2 ⊆ Out C3xHe354(C3xHe3):20C6486,222
(C3xHe3):21C6 = C3xS3xHe3φ: C6/C3C2 ⊆ Out C3xHe354(C3xHe3):21C6486,223
(C3xHe3):22C6 = C3xHe3:4S3φ: C6/C3C2 ⊆ Out C3xHe354(C3xHe3):22C6486,229
(C3xHe3):23C6 = C32xHe3:C2φ: C6/C3C2 ⊆ Out C3xHe381(C3xHe3):23C6486,230
(C3xHe3):24C6 = C3xHe3:5S3φ: C6/C3C2 ⊆ Out C3xHe354(C3xHe3):24C6486,243

Non-split extensions G=N.Q with N=C3xHe3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xHe3).1C6 = C32:C9:S3φ: C6/C1C6 ⊆ Out C3xHe3186(C3xHe3).1C6486,7
(C3xHe3).2C6 = (C3xHe3).C6φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).2C6486,9
(C3xHe3).3C6 = He3:C18φ: C6/C1C6 ⊆ Out C3xHe381(C3xHe3).3C6486,24
(C3xHe3).4C6 = C9:He3:C2φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).4C6486,107
(C3xHe3).5C6 = C3xHe3.C6φ: C6/C1C6 ⊆ Out C3xHe381(C3xHe3).5C6486,118
(C3xHe3).6C6 = S3xHe3.C3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).6C6486,120
(C3xHe3).7C6 = C3xHe3.2C6φ: C6/C1C6 ⊆ Out C3xHe381(C3xHe3).7C6486,121
(C3xHe3).8C6 = He3.C3:C6φ: C6/C1C6 ⊆ Out C3xHe3279(C3xHe3).8C6486,128
(C3xHe3).9C6 = He3.(C3xC6)φ: C6/C1C6 ⊆ Out C3xHe3279(C3xHe3).9C6486,130
(C3xHe3).10C6 = (C32xC9):8S3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).10C6486,150
(C3xHe3).11C6 = He3.C3:S3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).11C6486,169
(C3xHe3).12C6 = He3:C3:2S3φ: C6/C1C6 ⊆ Out C3xHe3546(C3xHe3).12C6486,172
(C3xHe3).13C6 = 3- 1+4:2C2φ: C6/C1C6 ⊆ Out C3xHe3279(C3xHe3).13C6486,239
(C3xHe3).14C6 = C2xC33.C32φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).14C6486,64
(C3xHe3).15C6 = C2xC32.27He3φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).15C6486,66
(C3xHe3).16C6 = C2xHe3:C9φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).16C6486,77
(C3xHe3).17C6 = C2xC9:He3φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).17C6486,198
(C3xHe3).18C6 = C2xC32.23C33φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).18C6486,199
(C3xHe3).19C6 = C6xHe3.C3φ: C6/C2C3 ⊆ Out C3xHe3162(C3xHe3).19C6486,211
(C3xHe3).20C6 = C2xHe3.C32φ: C6/C2C3 ⊆ Out C3xHe3549(C3xHe3).20C6486,216
(C3xHe3).21C6 = C2x3- 1+4φ: C6/C2C3 ⊆ Out C3xHe3549(C3xHe3).21C6486,255
(C3xHe3).22C6 = C9xC32:C6φ: C6/C3C2 ⊆ Out C3xHe3546(C3xHe3).22C6486,98
(C3xHe3).23C6 = C9xHe3:C2φ: C6/C3C2 ⊆ Out C3xHe381(C3xHe3).23C6486,143
(C3xHe3).24C6 = S3xC9oHe3φ: C6/C3C2 ⊆ Out C3xHe3546(C3xHe3).24C6486,226
(C3xHe3).25C6 = C3xHe3.4C6φ: C6/C3C2 ⊆ Out C3xHe381(C3xHe3).25C6486,235
(C3xHe3).26C6 = C9oHe3:4S3φ: C6/C3C2 ⊆ Out C3xHe3546(C3xHe3).26C6486,246
(C3xHe3).27C6 = C18xHe3φ: trivial image162(C3xHe3).27C6486,194
(C3xHe3).28C6 = C6xC9oHe3φ: trivial image162(C3xHe3).28C6486,253

׿
x
:
Z
F
o
wr
Q
<