Extensions 1→N→G→Q→1 with N=C3x3- 1+2 and Q=C6

Direct product G=NxQ with N=C3x3- 1+2 and Q=C6
dρLabelID
C3xC6x3- 1+2162C3xC6xES-(3,1)486,252

Semidirect products G=N:Q with N=C3x3- 1+2 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3x3- 1+2):1C6 = C34.S3φ: C6/C1C6 ⊆ Out C3x3- 1+227(C3xES-(3,1)):1C6486,105
(C3x3- 1+2):2C6 = D9:He3φ: C6/C1C6 ⊆ Out C3x3- 1+2546(C3xES-(3,1)):2C6486,106
(C3x3- 1+2):3C6 = C9:S3:C32φ: C6/C1C6 ⊆ Out C3x3- 1+22718+(C3xES-(3,1)):3C6486,129
(C3x3- 1+2):4C6 = He3.(C3xS3)φ: C6/C1C6 ⊆ Out C3x3- 1+22718+(C3xES-(3,1)):4C6486,131
(C3x3- 1+2):5C6 = 3- 1+4:C2φ: C6/C1C6 ⊆ Out C3x3- 1+22718+(C3xES-(3,1)):5C6486,238
(C3x3- 1+2):6C6 = S3xC3wrC3φ: C6/C1C6 ⊆ Out C3x3- 1+2186(C3xES-(3,1)):6C6486,117
(C3x3- 1+2):7C6 = S3xHe3.C3φ: C6/C1C6 ⊆ Out C3x3- 1+2546(C3xES-(3,1)):7C6486,120
(C3x3- 1+2):8C6 = C2xC33.C32φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)):8C6486,64
(C3x3- 1+2):9C6 = C2xC34.C3φ: C6/C2C3 ⊆ Out C3x3- 1+254(C3xES-(3,1)):9C6486,197
(C3x3- 1+2):10C6 = C2xC9:He3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)):10C6486,198
(C3x3- 1+2):11C6 = C2xC32.23C33φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)):11C6486,199
(C3x3- 1+2):12C6 = C6xC3wrC3φ: C6/C2C3 ⊆ Out C3x3- 1+254(C3xES-(3,1)):12C6486,210
(C3x3- 1+2):13C6 = C6xHe3.C3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)):13C6486,211
(C3x3- 1+2):14C6 = C2xC33:C32φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)):14C6486,215
(C3x3- 1+2):15C6 = C2xHe3.C32φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)):15C6486,216
(C3x3- 1+2):16C6 = C2xHe3:C32φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)):16C6486,217
(C3x3- 1+2):17C6 = C2xC9.2He3φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)):17C6486,219
(C3x3- 1+2):18C6 = C2x3- 1+4φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)):18C6486,255
(C3x3- 1+2):19C6 = C32xC9:C6φ: C6/C3C2 ⊆ Out C3x3- 1+254(C3xES-(3,1)):19C6486,224
(C3x3- 1+2):20C6 = C3xC33.S3φ: C6/C3C2 ⊆ Out C3x3- 1+254(C3xES-(3,1)):20C6486,232
(C3x3- 1+2):21C6 = C3xS3x3- 1+2φ: C6/C3C2 ⊆ Out C3x3- 1+254(C3xES-(3,1)):21C6486,225
(C3x3- 1+2):22C6 = S3xC9oHe3φ: C6/C3C2 ⊆ Out C3x3- 1+2546(C3xES-(3,1)):22C6486,226
(C3x3- 1+2):23C6 = C6xC9oHe3φ: trivial image162(C3xES-(3,1)):23C6486,253

Non-split extensions G=N.Q with N=C3x3- 1+2 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3x3- 1+2).1C6 = C92:7C6φ: C6/C1C6 ⊆ Out C3x3- 1+2546(C3xES-(3,1)).1C6486,109
(C3x3- 1+2).2C6 = C92:8C6φ: C6/C1C6 ⊆ Out C3x3- 1+2186(C3xES-(3,1)).2C6486,110
(C3x3- 1+2).3C6 = S3xC3.He3φ: C6/C1C6 ⊆ Out C3x3- 1+2546(C3xES-(3,1)).3C6486,124
(C3x3- 1+2).4C6 = C2xC33.3C32φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).4C6486,65
(C3x3- 1+2).5C6 = C2xC32.28He3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).5C6486,67
(C3x3- 1+2).6C6 = C2x3- 1+2:C9φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).6C6486,78
(C3x3- 1+2).7C6 = C2xC9:3- 1+2φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).7C6486,200
(C3x3- 1+2).8C6 = C2xC92:7C3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).8C6486,202
(C3x3- 1+2).9C6 = C2xC92:8C3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).9C6486,205
(C3x3- 1+2).10C6 = C2xC92:9C3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).10C6486,206
(C3x3- 1+2).11C6 = C6xC3.He3φ: C6/C2C3 ⊆ Out C3x3- 1+2162(C3xES-(3,1)).11C6486,213
(C3x3- 1+2).12C6 = C2xC32.C33φ: C6/C2C3 ⊆ Out C3x3- 1+2549(C3xES-(3,1)).12C6486,218
(C3x3- 1+2).13C6 = C9xC9:C6φ: C6/C3C2 ⊆ Out C3x3- 1+2546(C3xES-(3,1)).13C6486,100
(C3x3- 1+2).14C6 = C18x3- 1+2φ: trivial image162(C3xES-(3,1)).14C6486,195

׿
x
:
Z
F
o
wr
Q
<