direct product, metabelian, supersoluble, monomial
Aliases: C9×C9⋊C6, C92⋊6C6, 3- 1+2⋊2C18, C9⋊C9⋊14C6, C9⋊C18⋊4C3, C9⋊1(C3×C18), (C9×D9)⋊1C3, D9⋊1(C3×C9), C32.4(S3×C9), (C32×C9).5S3, C33.32(C3×S3), (C3×D9).2C32, (C9×3- 1+2)⋊1C2, C32.33(S3×C32), (C3×3- 1+2).13C6, C3.5(S3×C3×C9), C3.4(C3×C9⋊C6), (C3×C9⋊C6).3C3, (C3×C9).16(C3×S3), (C3×C9).11(C3×C6), SmallGroup(486,100)
Series: Derived ►Chief ►Lower central ►Upper central
C9 — C9×C9⋊C6 |
Generators and relations for C9×C9⋊C6
G = < a,b,c | a9=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >
Subgroups: 238 in 82 conjugacy classes, 33 normal (18 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C18, C3×S3, C3×C6, C3×C9, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, S3×C9, C9⋊C6, C3×C18, S3×C32, C92, C92, C32⋊C9, C9⋊C9, C9⋊C9, C32×C9, C3×3- 1+2, C9×D9, C9⋊C18, S3×C3×C9, C3×C9⋊C6, C9×3- 1+2, C9×C9⋊C6
Quotients: C1, C2, C3, S3, C6, C9, C32, C18, C3×S3, C3×C6, C3×C9, S3×C9, C9⋊C6, C3×C18, S3×C32, S3×C3×C9, C3×C9⋊C6, C9×C9⋊C6
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 41 33 4 44 36 7 38 30)(2 42 34 5 45 28 8 39 31)(3 43 35 6 37 29 9 40 32)(10 46 25 16 52 22 13 49 19)(11 47 26 17 53 23 14 50 20)(12 48 27 18 54 24 15 51 21)
(1 10 7 16 4 13)(2 11 8 17 5 14)(3 12 9 18 6 15)(19 41 22 44 25 38)(20 42 23 45 26 39)(21 43 24 37 27 40)(28 50)(29 51)(30 52)(31 53)(32 54)(33 46)(34 47)(35 48)(36 49)
G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,33,4,44,36,7,38,30)(2,42,34,5,45,28,8,39,31)(3,43,35,6,37,29,9,40,32)(10,46,25,16,52,22,13,49,19)(11,47,26,17,53,23,14,50,20)(12,48,27,18,54,24,15,51,21), (1,10,7,16,4,13)(2,11,8,17,5,14)(3,12,9,18,6,15)(19,41,22,44,25,38)(20,42,23,45,26,39)(21,43,24,37,27,40)(28,50)(29,51)(30,52)(31,53)(32,54)(33,46)(34,47)(35,48)(36,49)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,33,4,44,36,7,38,30)(2,42,34,5,45,28,8,39,31)(3,43,35,6,37,29,9,40,32)(10,46,25,16,52,22,13,49,19)(11,47,26,17,53,23,14,50,20)(12,48,27,18,54,24,15,51,21), (1,10,7,16,4,13)(2,11,8,17,5,14)(3,12,9,18,6,15)(19,41,22,44,25,38)(20,42,23,45,26,39)(21,43,24,37,27,40)(28,50)(29,51)(30,52)(31,53)(32,54)(33,46)(34,47)(35,48)(36,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,41,33,4,44,36,7,38,30),(2,42,34,5,45,28,8,39,31),(3,43,35,6,37,29,9,40,32),(10,46,25,16,52,22,13,49,19),(11,47,26,17,53,23,14,50,20),(12,48,27,18,54,24,15,51,21)], [(1,10,7,16,4,13),(2,11,8,17,5,14),(3,12,9,18,6,15),(19,41,22,44,25,38),(20,42,23,45,26,39),(21,43,24,37,27,40),(28,50),(29,51),(30,52),(31,53),(32,54),(33,46),(34,47),(35,48),(36,49)]])
90 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 6A | ··· | 6H | 9A | ··· | 9F | 9G | ··· | 9L | 9M | ··· | 9X | 9Y | ··· | 9AY | 18A | ··· | 18R |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 9 | 1 | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 9 | ··· | 9 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | |||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9 | C18 | S3 | C3×S3 | C3×S3 | S3×C9 | C9⋊C6 | C3×C9⋊C6 | C9×C9⋊C6 |
kernel | C9×C9⋊C6 | C9×3- 1+2 | C9×D9 | C9⋊C18 | C3×C9⋊C6 | C92 | C9⋊C9 | C3×3- 1+2 | C9⋊C6 | 3- 1+2 | C32×C9 | C3×C9 | C33 | C32 | C9 | C3 | C1 |
# reps | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 2 | 18 | 18 | 1 | 6 | 2 | 18 | 1 | 2 | 6 |
Matrix representation of C9×C9⋊C6 ►in GL6(𝔽19)
6 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
18 | 11 | 8 | 3 | 14 | 16 |
18 | 0 | 8 | 14 | 17 | 0 |
6 | 0 | 1 | 14 | 17 | 7 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
16 | 2 | 6 | 14 | 9 | 8 |
11 | 14 | 10 | 3 | 5 | 3 |
0 | 0 | 0 | 0 | 0 | 11 |
4 | 0 | 7 | 3 | 5 | 11 |
0 | 6 | 1 | 12 | 5 | 2 |
0 | 0 | 11 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[18,18,6,0,0,0,11,0,0,0,0,0,8,8,1,0,0,0,3,14,14,0,7,0,14,17,17,0,0,7,16,0,7,1,0,0],[16,11,0,4,0,0,2,14,0,0,6,0,6,10,0,7,1,11,14,3,0,3,12,0,9,5,0,5,5,0,8,3,11,11,2,0] >;
C9×C9⋊C6 in GAP, Magma, Sage, TeX
C_9\times C_9\rtimes C_6
% in TeX
G:=Group("C9xC9:C6");
// GroupNames label
G:=SmallGroup(486,100);
// by ID
G=gap.SmallGroup(486,100);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,68,8104,3250,208,11669]);
// Polycyclic
G:=Group<a,b,c|a^9=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations