direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C9⋊He3, C18⋊He3, C9⋊2(C2×He3), C3.5(C6×He3), C6.5(C3×He3), C32⋊C9⋊15C6, (C32×C9)⋊33C6, (C32×C18)⋊7C3, (C6×He3).4C3, C33.8(C3×C6), (C3×He3).17C6, C6.4(C9○He3), (C3×C6).22C33, (C3×C18).5C32, (C3×C6)⋊13- 1+2, C32.26(C32×C6), (C32×C6).28C32, (C6×3- 1+2)⋊3C3, C6.5(C3×3- 1+2), C3.5(C6×3- 1+2), (C3×3- 1+2)⋊10C6, C32⋊3(C2×3- 1+2), (C3×C9).5(C3×C6), (C2×C32⋊C9)⋊7C3, C3.4(C2×C9○He3), SmallGroup(486,198)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C9⋊He3
G = < a,b,c,d,e | a2=b9=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b7, cd=dc, ece-1=cd-1, de=ed >
Subgroups: 378 in 166 conjugacy classes, 78 normal (18 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C9, C32, C32, C32, C18, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, C3×C9, He3, 3- 1+2, C33, C33, C3×C18, C3×C18, C3×C18, C2×He3, C2×3- 1+2, C32×C6, C32×C6, C32⋊C9, C32×C9, C3×He3, C3×3- 1+2, C2×C32⋊C9, C32×C18, C6×He3, C6×3- 1+2, C9⋊He3, C2×C9⋊He3
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, 3- 1+2, C33, C2×He3, C2×3- 1+2, C32×C6, C3×He3, C3×3- 1+2, C9○He3, C6×He3, C6×3- 1+2, C2×C9○He3, C9⋊He3, C2×C9⋊He3
(1 105)(2 106)(3 107)(4 108)(5 100)(6 101)(7 102)(8 103)(9 104)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 82)(18 83)(19 93)(20 94)(21 95)(22 96)(23 97)(24 98)(25 99)(26 91)(27 92)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(10 159 26)(11 160 27)(12 161 19)(13 162 20)(14 154 21)(15 155 22)(16 156 23)(17 157 24)(18 158 25)(46 71 58)(47 72 59)(48 64 60)(49 65 61)(50 66 62)(51 67 63)(52 68 55)(53 69 56)(54 70 57)(73 95 88)(74 96 89)(75 97 90)(76 98 82)(77 99 83)(78 91 84)(79 92 85)(80 93 86)(81 94 87)(127 152 139)(128 153 140)(129 145 141)(130 146 142)(131 147 143)(132 148 144)(133 149 136)(134 150 137)(135 151 138)
(1 41 28)(2 42 29)(3 43 30)(4 44 31)(5 45 32)(6 37 33)(7 38 34)(8 39 35)(9 40 36)(10 26 159)(11 27 160)(12 19 161)(13 20 162)(14 21 154)(15 22 155)(16 23 156)(17 24 157)(18 25 158)(46 71 58)(47 72 59)(48 64 60)(49 65 61)(50 66 62)(51 67 63)(52 68 55)(53 69 56)(54 70 57)(73 88 95)(74 89 96)(75 90 97)(76 82 98)(77 83 99)(78 84 91)(79 85 92)(80 86 93)(81 87 94)(100 126 113)(101 118 114)(102 119 115)(103 120 116)(104 121 117)(105 122 109)(106 123 110)(107 124 111)(108 125 112)(127 152 139)(128 153 140)(129 145 141)(130 146 142)(131 147 143)(132 148 144)(133 149 136)(134 150 137)(135 151 138)
(1 88 52)(2 83 50)(3 87 48)(4 82 46)(5 86 53)(6 90 51)(7 85 49)(8 89 47)(9 84 54)(10 135 104)(11 130 102)(12 134 100)(13 129 107)(14 133 105)(15 128 103)(16 132 101)(17 127 108)(18 131 106)(19 150 126)(20 145 124)(21 149 122)(22 153 120)(23 148 118)(24 152 125)(25 147 123)(26 151 121)(27 146 119)(28 73 55)(29 77 62)(30 81 60)(31 76 58)(32 80 56)(33 75 63)(34 79 61)(35 74 59)(36 78 57)(37 97 67)(38 92 65)(39 96 72)(40 91 70)(41 95 68)(42 99 66)(43 94 64)(44 98 71)(45 93 69)(109 154 136)(110 158 143)(111 162 141)(112 157 139)(113 161 137)(114 156 144)(115 160 142)(116 155 140)(117 159 138)
G:=sub<Sym(162)| (1,105)(2,106)(3,107)(4,108)(5,100)(6,101)(7,102)(8,103)(9,104)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (10,159,26)(11,160,27)(12,161,19)(13,162,20)(14,154,21)(15,155,22)(16,156,23)(17,157,24)(18,158,25)(46,71,58)(47,72,59)(48,64,60)(49,65,61)(50,66,62)(51,67,63)(52,68,55)(53,69,56)(54,70,57)(73,95,88)(74,96,89)(75,97,90)(76,98,82)(77,99,83)(78,91,84)(79,92,85)(80,93,86)(81,94,87)(127,152,139)(128,153,140)(129,145,141)(130,146,142)(131,147,143)(132,148,144)(133,149,136)(134,150,137)(135,151,138), (1,41,28)(2,42,29)(3,43,30)(4,44,31)(5,45,32)(6,37,33)(7,38,34)(8,39,35)(9,40,36)(10,26,159)(11,27,160)(12,19,161)(13,20,162)(14,21,154)(15,22,155)(16,23,156)(17,24,157)(18,25,158)(46,71,58)(47,72,59)(48,64,60)(49,65,61)(50,66,62)(51,67,63)(52,68,55)(53,69,56)(54,70,57)(73,88,95)(74,89,96)(75,90,97)(76,82,98)(77,83,99)(78,84,91)(79,85,92)(80,86,93)(81,87,94)(100,126,113)(101,118,114)(102,119,115)(103,120,116)(104,121,117)(105,122,109)(106,123,110)(107,124,111)(108,125,112)(127,152,139)(128,153,140)(129,145,141)(130,146,142)(131,147,143)(132,148,144)(133,149,136)(134,150,137)(135,151,138), (1,88,52)(2,83,50)(3,87,48)(4,82,46)(5,86,53)(6,90,51)(7,85,49)(8,89,47)(9,84,54)(10,135,104)(11,130,102)(12,134,100)(13,129,107)(14,133,105)(15,128,103)(16,132,101)(17,127,108)(18,131,106)(19,150,126)(20,145,124)(21,149,122)(22,153,120)(23,148,118)(24,152,125)(25,147,123)(26,151,121)(27,146,119)(28,73,55)(29,77,62)(30,81,60)(31,76,58)(32,80,56)(33,75,63)(34,79,61)(35,74,59)(36,78,57)(37,97,67)(38,92,65)(39,96,72)(40,91,70)(41,95,68)(42,99,66)(43,94,64)(44,98,71)(45,93,69)(109,154,136)(110,158,143)(111,162,141)(112,157,139)(113,161,137)(114,156,144)(115,160,142)(116,155,140)(117,159,138)>;
G:=Group( (1,105)(2,106)(3,107)(4,108)(5,100)(6,101)(7,102)(8,103)(9,104)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (10,159,26)(11,160,27)(12,161,19)(13,162,20)(14,154,21)(15,155,22)(16,156,23)(17,157,24)(18,158,25)(46,71,58)(47,72,59)(48,64,60)(49,65,61)(50,66,62)(51,67,63)(52,68,55)(53,69,56)(54,70,57)(73,95,88)(74,96,89)(75,97,90)(76,98,82)(77,99,83)(78,91,84)(79,92,85)(80,93,86)(81,94,87)(127,152,139)(128,153,140)(129,145,141)(130,146,142)(131,147,143)(132,148,144)(133,149,136)(134,150,137)(135,151,138), (1,41,28)(2,42,29)(3,43,30)(4,44,31)(5,45,32)(6,37,33)(7,38,34)(8,39,35)(9,40,36)(10,26,159)(11,27,160)(12,19,161)(13,20,162)(14,21,154)(15,22,155)(16,23,156)(17,24,157)(18,25,158)(46,71,58)(47,72,59)(48,64,60)(49,65,61)(50,66,62)(51,67,63)(52,68,55)(53,69,56)(54,70,57)(73,88,95)(74,89,96)(75,90,97)(76,82,98)(77,83,99)(78,84,91)(79,85,92)(80,86,93)(81,87,94)(100,126,113)(101,118,114)(102,119,115)(103,120,116)(104,121,117)(105,122,109)(106,123,110)(107,124,111)(108,125,112)(127,152,139)(128,153,140)(129,145,141)(130,146,142)(131,147,143)(132,148,144)(133,149,136)(134,150,137)(135,151,138), (1,88,52)(2,83,50)(3,87,48)(4,82,46)(5,86,53)(6,90,51)(7,85,49)(8,89,47)(9,84,54)(10,135,104)(11,130,102)(12,134,100)(13,129,107)(14,133,105)(15,128,103)(16,132,101)(17,127,108)(18,131,106)(19,150,126)(20,145,124)(21,149,122)(22,153,120)(23,148,118)(24,152,125)(25,147,123)(26,151,121)(27,146,119)(28,73,55)(29,77,62)(30,81,60)(31,76,58)(32,80,56)(33,75,63)(34,79,61)(35,74,59)(36,78,57)(37,97,67)(38,92,65)(39,96,72)(40,91,70)(41,95,68)(42,99,66)(43,94,64)(44,98,71)(45,93,69)(109,154,136)(110,158,143)(111,162,141)(112,157,139)(113,161,137)(114,156,144)(115,160,142)(116,155,140)(117,159,138) );
G=PermutationGroup([[(1,105),(2,106),(3,107),(4,108),(5,100),(6,101),(7,102),(8,103),(9,104),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,82),(18,83),(19,93),(20,94),(21,95),(22,96),(23,97),(24,98),(25,99),(26,91),(27,92),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(10,159,26),(11,160,27),(12,161,19),(13,162,20),(14,154,21),(15,155,22),(16,156,23),(17,157,24),(18,158,25),(46,71,58),(47,72,59),(48,64,60),(49,65,61),(50,66,62),(51,67,63),(52,68,55),(53,69,56),(54,70,57),(73,95,88),(74,96,89),(75,97,90),(76,98,82),(77,99,83),(78,91,84),(79,92,85),(80,93,86),(81,94,87),(127,152,139),(128,153,140),(129,145,141),(130,146,142),(131,147,143),(132,148,144),(133,149,136),(134,150,137),(135,151,138)], [(1,41,28),(2,42,29),(3,43,30),(4,44,31),(5,45,32),(6,37,33),(7,38,34),(8,39,35),(9,40,36),(10,26,159),(11,27,160),(12,19,161),(13,20,162),(14,21,154),(15,22,155),(16,23,156),(17,24,157),(18,25,158),(46,71,58),(47,72,59),(48,64,60),(49,65,61),(50,66,62),(51,67,63),(52,68,55),(53,69,56),(54,70,57),(73,88,95),(74,89,96),(75,90,97),(76,82,98),(77,83,99),(78,84,91),(79,85,92),(80,86,93),(81,87,94),(100,126,113),(101,118,114),(102,119,115),(103,120,116),(104,121,117),(105,122,109),(106,123,110),(107,124,111),(108,125,112),(127,152,139),(128,153,140),(129,145,141),(130,146,142),(131,147,143),(132,148,144),(133,149,136),(134,150,137),(135,151,138)], [(1,88,52),(2,83,50),(3,87,48),(4,82,46),(5,86,53),(6,90,51),(7,85,49),(8,89,47),(9,84,54),(10,135,104),(11,130,102),(12,134,100),(13,129,107),(14,133,105),(15,128,103),(16,132,101),(17,127,108),(18,131,106),(19,150,126),(20,145,124),(21,149,122),(22,153,120),(23,148,118),(24,152,125),(25,147,123),(26,151,121),(27,146,119),(28,73,55),(29,77,62),(30,81,60),(31,76,58),(32,80,56),(33,75,63),(34,79,61),(35,74,59),(36,78,57),(37,97,67),(38,92,65),(39,96,72),(40,91,70),(41,95,68),(42,99,66),(43,94,64),(44,98,71),(45,93,69),(109,154,136),(110,158,143),(111,162,141),(112,157,139),(113,161,137),(114,156,144),(115,160,142),(116,155,140),(117,159,138)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3N | 3O | ··· | 3T | 6A | ··· | 6H | 6I | ··· | 6N | 6O | ··· | 6T | 9A | ··· | 9R | 9S | ··· | 9AD | 18A | ··· | 18R | 18S | ··· | 18AD |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C3 | C6 | C6 | C6 | C6 | He3 | 3- 1+2 | C2×He3 | C2×3- 1+2 | C9○He3 | C2×C9○He3 |
kernel | C2×C9⋊He3 | C9⋊He3 | C2×C32⋊C9 | C32×C18 | C6×He3 | C6×3- 1+2 | C32⋊C9 | C32×C9 | C3×He3 | C3×3- 1+2 | C18 | C3×C6 | C9 | C32 | C6 | C3 |
# reps | 1 | 1 | 16 | 2 | 2 | 6 | 16 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 12 | 12 |
Matrix representation of C2×C9⋊He3 ►in GL7(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 11 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(19))| [18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
C2×C9⋊He3 in GAP, Magma, Sage, TeX
C_2\times C_9\rtimes {\rm He}_3
% in TeX
G:=Group("C2xC9:He3");
// GroupNames label
G:=SmallGroup(486,198);
// by ID
G=gap.SmallGroup(486,198);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,176,2169]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^9=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^7,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations