Extensions 1→N→G→Q→1 with N=C3 and Q=He3.3S3

Direct product G=N×Q with N=C3 and Q=He3.3S3
dρLabelID
C3×He3.3S3546C3xHe3.3S3486,168

Semidirect products G=N:Q with N=C3 and Q=He3.3S3
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.3S3) = He3.(C3⋊S3)φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3:(He3.3S3)486,186

Non-split extensions G=N.Q with N=C3 and Q=He3.3S3
extensionφ:Q→Aut NdρLabelID
C3.1(He3.3S3) = (C3×He3).S3φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.1(He3.3S3)486,44
C3.2(He3.3S3) = C33.(C3⋊S3)φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.2(He3.3S3)486,45
C3.3(He3.3S3) = C32⋊C96S3φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.3(He3.3S3)486,46
C3.4(He3.3S3) = C3.(He3⋊S3)φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.4(He3.3S3)486,48
C3.5(He3.3S3) = C32⋊C9.10S3φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.5(He3.3S3)486,49
C3.6(He3.3S3) = (C3×C9)⋊5D9φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.6(He3.3S3)486,53
C3.7(He3.3S3) = He32D9φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.7(He3.3S3)486,56
C3.8(He3.3S3) = 3- 1+2⋊D9φ: He3.3S3/He3.C3C2 ⊆ Aut C381C3.8(He3.3S3)486,57

׿
×
𝔽