Copied to
clipboard

G = 3- 1+2⋊D9order 486 = 2·35

The semidirect product of 3- 1+2 and D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: 3- 1+2⋊D9, 3- 1+2⋊C9⋊C2, C32⋊C9.13S3, C32.2(C9⋊S3), (C32×C9).13S3, C33.24(C3⋊S3), C3.8(C33⋊S3), C3.8(C322D9), C3.8(He3.3S3), (C3×3- 1+2).3S3, C32.24(He3⋊C2), C3.5(3- 1+2.S3), SmallGroup(486,57)

Series: Derived Chief Lower central Upper central

C1C323- 1+2⋊C9 — 3- 1+2⋊D9
C1C3C32C33C32×C93- 1+2⋊C9 — 3- 1+2⋊D9
3- 1+2⋊C9 — 3- 1+2⋊D9
C1

Generators and relations for 3- 1+2⋊D9
 G = < a,b,c,d | a9=b3=c9=d2=1, bab-1=a4, cac-1=a4b-1, dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 682 in 73 conjugacy classes, 17 normal (14 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, C9⋊C6, C9⋊S3, C3×C3⋊S3, C32⋊C9, C32×C9, C3×3- 1+2, C32⋊D9, C3×C9⋊S3, C33.S3, 3- 1+2⋊C9, 3- 1+2⋊D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C322D9, C33⋊S3, He3.3S3, 3- 1+2.S3, 3- 1+2⋊D9

Character table of 3- 1+2⋊D9

 class 123A3B3C3D3E3F3G3H6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R
 size 181222233668181666666666181818181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111-1-1111111111111111111    linear of order 2
ρ3202222222200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1222    orthogonal lifted from S3
ρ4202222222200-1-1-1-1-1-1-1-1-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ5202222222200222222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ6202222222200-1-1-1-1-1-1-1-1-1-1-1-1222-1-1-1    orthogonal lifted from S3
ρ720-1-1-1222-1-100ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ989ζ9594ζ97922-1-1ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ820-1-1-1222-1-100ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9792ζ989ζ95942-1-1ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ920-1-1-1222-1-100ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ989ζ9594-12-1ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ1020-1-1-1222-1-100ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ9594ζ9792ζ9892-1-1ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ1120-1-1-1222-1-100ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ989ζ9594ζ9792-1-12ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ1220-1-1-1222-1-100ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ9792ζ989ζ9594-1-12ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ1320-1-1-1222-1-100ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9792ζ989-12-1ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ1420-1-1-1222-1-100ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ9594ζ9792-12-1ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1520-1-1-1222-1-100ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9594ζ9792ζ989-1-12ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ16313333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ3ζ32000000000000000000    complex lifted from He3⋊C2
ρ173-13333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ65ζ6000000000000000000    complex lifted from He3⋊C2
ρ183-13333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ6ζ65000000000000000000    complex lifted from He3⋊C2
ρ19313333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ32ζ3000000000000000000    complex lifted from He3⋊C2
ρ20606-3-3-300000003-303-303-3000000000    orthogonal lifted from C33⋊S3
ρ21606-3-3-3000000-303-303-303000000000    orthogonal lifted from C33⋊S3
ρ22606-3-3-30000003-303-303-30000000000    orthogonal lifted from C33⋊S3
ρ2360-36-3-30000009594929ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ99594929ζ989794+2ζ92ζ989794+2ζ92ζ989492+2ζ99594929000000000    orthogonal lifted from He3.3S3
ρ2460-3-36-3000000989492998+2ζ979492ζ95+2ζ9492998+2ζ979492ζ95+2ζ949299894929ζ95+2ζ94929989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2560-3-36-300000098+2ζ979492ζ95+2ζ949299894929ζ95+2ζ94929989492998+2ζ979492989492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2660-36-3-3000000ζ989492+2ζ99594929ζ989794+2ζ92ζ989794+2ζ92ζ989492+2ζ995949299594929ζ989794+2ζ92ζ989492+2ζ9000000000    orthogonal lifted from He3.3S3
ρ2760-3-36-3000000ζ95+2ζ94929989492998+2ζ979492989492998+2ζ979492ζ95+2ζ9492998+2ζ979492ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ2860-36-3-3000000ζ989794+2ζ92ζ989492+2ζ995949299594929ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ99594929ζ989794+2ζ92000000000    orthogonal lifted from He3.3S3
ρ2960-3-3-36-3-3-3-3+3-33+3-3/23-3-3/200000000000000000000    complex lifted from C322D9
ρ3060-3-3-36-3+3-3-3-3-33-3-3/23+3-3/200000000000000000000    complex lifted from C322D9

Smallest permutation representation of 3- 1+2⋊D9
On 81 points
Generators in S81
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(20 26 23)(21 24 27)(28 34 31)(29 32 35)(37 40 43)(39 45 42)(46 52 49)(47 50 53)(56 62 59)(57 60 63)(65 71 68)(66 69 72)(73 76 79)(75 81 78)
(1 41 64 54 77 61 17 33 25)(2 45 71 46 81 59 18 28 23)(3 37 72 47 73 60 10 29 24)(4 44 67 48 80 55 11 36 19)(5 39 65 49 75 62 12 31 26)(6 40 66 50 76 63 13 32 27)(7 38 70 51 74 58 14 30 22)(8 42 68 52 78 56 15 34 20)(9 43 69 53 79 57 16 35 21)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 27)(9 26)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 72)(28 37)(29 45)(30 44)(31 43)(32 42)(33 41)(34 40)(35 39)(36 38)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 63)(53 62)(54 61)(73 81)(74 80)(75 79)(76 78)

G:=sub<Sym(81)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,76,79)(75,81,78), (1,41,64,54,77,61,17,33,25)(2,45,71,46,81,59,18,28,23)(3,37,72,47,73,60,10,29,24)(4,44,67,48,80,55,11,36,19)(5,39,65,49,75,62,12,31,26)(6,40,66,50,76,63,13,32,27)(7,38,70,51,74,58,14,30,22)(8,42,68,52,78,56,15,34,20)(9,43,69,53,79,57,16,35,21), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(28,37)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,63)(53,62)(54,61)(73,81)(74,80)(75,79)(76,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,76,79)(75,81,78), (1,41,64,54,77,61,17,33,25)(2,45,71,46,81,59,18,28,23)(3,37,72,47,73,60,10,29,24)(4,44,67,48,80,55,11,36,19)(5,39,65,49,75,62,12,31,26)(6,40,66,50,76,63,13,32,27)(7,38,70,51,74,58,14,30,22)(8,42,68,52,78,56,15,34,20)(9,43,69,53,79,57,16,35,21), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(28,37)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,63)(53,62)(54,61)(73,81)(74,80)(75,79)(76,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(20,26,23),(21,24,27),(28,34,31),(29,32,35),(37,40,43),(39,45,42),(46,52,49),(47,50,53),(56,62,59),(57,60,63),(65,71,68),(66,69,72),(73,76,79),(75,81,78)], [(1,41,64,54,77,61,17,33,25),(2,45,71,46,81,59,18,28,23),(3,37,72,47,73,60,10,29,24),(4,44,67,48,80,55,11,36,19),(5,39,65,49,75,62,12,31,26),(6,40,66,50,76,63,13,32,27),(7,38,70,51,74,58,14,30,22),(8,42,68,52,78,56,15,34,20),(9,43,69,53,79,57,16,35,21)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,27),(9,26),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,72),(28,37),(29,45),(30,44),(31,43),(32,42),(33,41),(34,40),(35,39),(36,38),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,63),(53,62),(54,61),(73,81),(74,80),(75,79),(76,78)]])

Matrix representation of 3- 1+2⋊D9 in GL8(𝔽19)

01000000
1818000000
0017871000
004316700
001020181217
00916018214
0018851700
006351700
,
10000000
01000000
00100000
00010000
001612181800
00001000
00000001
001012001818
,
214000000
57000000
00250000
001470000
0072171200
009137500
00411001712
001030075
,
10000000
1818000000
001470000
00250000
004600142
001130075
0011114200
001687500

G:=sub<GL(8,GF(19))| [0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,17,4,10,9,18,6,0,0,8,3,2,16,8,3,0,0,7,16,0,0,5,5,0,0,10,7,18,18,17,17,0,0,0,0,12,2,0,0,0,0,0,0,17,14,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,16,0,0,10,0,0,0,1,12,0,0,12,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[2,5,0,0,0,0,0,0,14,7,0,0,0,0,0,0,0,0,2,14,7,9,4,10,0,0,5,7,2,13,11,3,0,0,0,0,17,7,0,0,0,0,0,0,12,5,0,0,0,0,0,0,0,0,17,7,0,0,0,0,0,0,12,5],[1,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,14,2,4,11,1,16,0,0,7,5,6,3,11,8,0,0,0,0,0,0,14,7,0,0,0,0,0,0,2,5,0,0,0,0,14,7,0,0,0,0,0,0,2,5,0,0] >;

3- 1+2⋊D9 in GAP, Magma, Sage, TeX

3_-^{1+2}\rtimes D_9
% in TeX

G:=Group("ES-(3,1):D9");
// GroupNames label

G:=SmallGroup(486,57);
// by ID

G=gap.SmallGroup(486,57);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,697,655,1190,224,338,8211,2169,3244,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^3=c^9=d^2=1,b*a*b^-1=a^4,c*a*c^-1=a^4*b^-1,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of 3- 1+2⋊D9 in TeX

׿
×
𝔽