non-abelian, supersoluble, monomial
Aliases: 3- 1+2⋊D9, 3- 1+2⋊C9⋊C2, C32⋊C9.13S3, C32.2(C9⋊S3), (C32×C9).13S3, C33.24(C3⋊S3), C3.8(C33⋊S3), C3.8(C32⋊2D9), C3.8(He3.3S3), (C3×3- 1+2).3S3, C32.24(He3⋊C2), C3.5(3- 1+2.S3), SmallGroup(486,57)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — 3- 1+2⋊C9 — 3- 1+2⋊D9 |
3- 1+2⋊C9 — 3- 1+2⋊D9 |
Generators and relations for 3- 1+2⋊D9
G = < a,b,c,d | a9=b3=c9=d2=1, bab-1=a4, cac-1=a4b-1, dad=a-1, bc=cb, bd=db, dcd=c-1 >
Subgroups: 682 in 73 conjugacy classes, 17 normal (14 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, C9⋊C6, C9⋊S3, C3×C3⋊S3, C32⋊C9, C32×C9, C3×3- 1+2, C32⋊D9, C3×C9⋊S3, C33.S3, 3- 1+2⋊C9, 3- 1+2⋊D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C32⋊2D9, C33⋊S3, He3.3S3, 3- 1+2.S3, 3- 1+2⋊D9
Character table of 3- 1+2⋊D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | 9P | 9Q | 9R | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 81 | 81 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 2 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 2 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | 2 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 2 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | -1 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | -1 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | 2 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | 2 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | -1 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ16 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ21 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ22 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ23 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ24 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ25 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ26 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ27 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ28 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ29 | 6 | 0 | -3 | -3 | -3 | 6 | -3-3√-3 | -3+3√-3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | -3 | -3 | -3 | 6 | -3+3√-3 | -3-3√-3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(20 26 23)(21 24 27)(28 34 31)(29 32 35)(37 40 43)(39 45 42)(46 52 49)(47 50 53)(56 62 59)(57 60 63)(65 71 68)(66 69 72)(73 76 79)(75 81 78)
(1 41 64 54 77 61 17 33 25)(2 45 71 46 81 59 18 28 23)(3 37 72 47 73 60 10 29 24)(4 44 67 48 80 55 11 36 19)(5 39 65 49 75 62 12 31 26)(6 40 66 50 76 63 13 32 27)(7 38 70 51 74 58 14 30 22)(8 42 68 52 78 56 15 34 20)(9 43 69 53 79 57 16 35 21)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 27)(9 26)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 72)(28 37)(29 45)(30 44)(31 43)(32 42)(33 41)(34 40)(35 39)(36 38)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 63)(53 62)(54 61)(73 81)(74 80)(75 79)(76 78)
G:=sub<Sym(81)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,76,79)(75,81,78), (1,41,64,54,77,61,17,33,25)(2,45,71,46,81,59,18,28,23)(3,37,72,47,73,60,10,29,24)(4,44,67,48,80,55,11,36,19)(5,39,65,49,75,62,12,31,26)(6,40,66,50,76,63,13,32,27)(7,38,70,51,74,58,14,30,22)(8,42,68,52,78,56,15,34,20)(9,43,69,53,79,57,16,35,21), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(28,37)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,63)(53,62)(54,61)(73,81)(74,80)(75,79)(76,78)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(65,71,68)(66,69,72)(73,76,79)(75,81,78), (1,41,64,54,77,61,17,33,25)(2,45,71,46,81,59,18,28,23)(3,37,72,47,73,60,10,29,24)(4,44,67,48,80,55,11,36,19)(5,39,65,49,75,62,12,31,26)(6,40,66,50,76,63,13,32,27)(7,38,70,51,74,58,14,30,22)(8,42,68,52,78,56,15,34,20)(9,43,69,53,79,57,16,35,21), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(28,37)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,63)(53,62)(54,61)(73,81)(74,80)(75,79)(76,78) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(20,26,23),(21,24,27),(28,34,31),(29,32,35),(37,40,43),(39,45,42),(46,52,49),(47,50,53),(56,62,59),(57,60,63),(65,71,68),(66,69,72),(73,76,79),(75,81,78)], [(1,41,64,54,77,61,17,33,25),(2,45,71,46,81,59,18,28,23),(3,37,72,47,73,60,10,29,24),(4,44,67,48,80,55,11,36,19),(5,39,65,49,75,62,12,31,26),(6,40,66,50,76,63,13,32,27),(7,38,70,51,74,58,14,30,22),(8,42,68,52,78,56,15,34,20),(9,43,69,53,79,57,16,35,21)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,27),(9,26),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,72),(28,37),(29,45),(30,44),(31,43),(32,42),(33,41),(34,40),(35,39),(36,38),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,63),(53,62),(54,61),(73,81),(74,80),(75,79),(76,78)]])
Matrix representation of 3- 1+2⋊D9 ►in GL8(𝔽19)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 8 | 7 | 10 | 0 | 0 |
0 | 0 | 4 | 3 | 16 | 7 | 0 | 0 |
0 | 0 | 10 | 2 | 0 | 18 | 12 | 17 |
0 | 0 | 9 | 16 | 0 | 18 | 2 | 14 |
0 | 0 | 18 | 8 | 5 | 17 | 0 | 0 |
0 | 0 | 6 | 3 | 5 | 17 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 12 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 10 | 12 | 0 | 0 | 18 | 18 |
2 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 2 | 17 | 12 | 0 | 0 |
0 | 0 | 9 | 13 | 7 | 5 | 0 | 0 |
0 | 0 | 4 | 11 | 0 | 0 | 17 | 12 |
0 | 0 | 10 | 3 | 0 | 0 | 7 | 5 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 6 | 0 | 0 | 14 | 2 |
0 | 0 | 11 | 3 | 0 | 0 | 7 | 5 |
0 | 0 | 1 | 11 | 14 | 2 | 0 | 0 |
0 | 0 | 16 | 8 | 7 | 5 | 0 | 0 |
G:=sub<GL(8,GF(19))| [0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,17,4,10,9,18,6,0,0,8,3,2,16,8,3,0,0,7,16,0,0,5,5,0,0,10,7,18,18,17,17,0,0,0,0,12,2,0,0,0,0,0,0,17,14,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,16,0,0,10,0,0,0,1,12,0,0,12,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[2,5,0,0,0,0,0,0,14,7,0,0,0,0,0,0,0,0,2,14,7,9,4,10,0,0,5,7,2,13,11,3,0,0,0,0,17,7,0,0,0,0,0,0,12,5,0,0,0,0,0,0,0,0,17,7,0,0,0,0,0,0,12,5],[1,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,14,2,4,11,1,16,0,0,7,5,6,3,11,8,0,0,0,0,0,0,14,7,0,0,0,0,0,0,2,5,0,0,0,0,14,7,0,0,0,0,0,0,2,5,0,0] >;
3- 1+2⋊D9 in GAP, Magma, Sage, TeX
3_-^{1+2}\rtimes D_9
% in TeX
G:=Group("ES-(3,1):D9");
// GroupNames label
G:=SmallGroup(486,57);
// by ID
G=gap.SmallGroup(486,57);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,697,655,1190,224,338,8211,2169,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^3=c^9=d^2=1,b*a*b^-1=a^4,c*a*c^-1=a^4*b^-1,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export