non-abelian, supersoluble, monomial
Aliases: He3⋊2D9, He3⋊C9⋊3C2, C32⋊C9⋊8S3, (C32×C9)⋊11S3, (C3×He3).6S3, C32.1(C9⋊S3), C33.23(C3⋊S3), C3.7(C33⋊S3), C3.5(He3⋊S3), C3.7(C32⋊2D9), C3.7(He3.3S3), C32.23(He3⋊C2), SmallGroup(486,56)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — He3⋊C9 — He3⋊2D9 |
He3⋊C9 — He3⋊2D9 |
Generators and relations for He3⋊2D9
G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, cac-1=eae=ab-1, ad=da, bc=cb, bd=db, ebe=b-1, dcd-1=ab-1c, ece=a-1c-1, ede=d-1 >
Subgroups: 1060 in 85 conjugacy classes, 17 normal (12 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, He3, He3, C33, C33, C3×D9, C32⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, C32⋊C9, C32×C9, C3×He3, C32⋊D9, C3×C9⋊S3, He3⋊4S3, He3⋊C9, He3⋊2D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C32⋊2D9, C33⋊S3, He3.3S3, He3⋊S3, He3⋊2D9
Character table of He3⋊2D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 18 | 18 | 18 | 81 | 81 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ21 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ22 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ23 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3⋊S3 |
ρ24 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ25 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ26 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3⋊S3 |
ρ27 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3⋊S3 |
ρ28 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ29 | 6 | 0 | -3 | -3 | -3 | 6 | -3-3√-3 | -3+3√-3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | -3 | -3 | -3 | 6 | -3+3√-3 | -3-3√-3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 44 12)(2 45 13)(3 37 14)(4 38 15)(5 39 16)(6 40 17)(7 41 18)(8 42 10)(9 43 11)(19 66 49)(20 67 50)(21 68 51)(22 69 52)(23 70 53)(24 71 54)(25 72 46)(26 64 47)(27 65 48)(28 81 58)(29 73 59)(30 74 60)(31 75 61)(32 76 62)(33 77 63)(34 78 55)(35 79 56)(36 80 57)
(1 77 20)(2 78 21)(3 79 22)(4 80 23)(5 81 24)(6 73 25)(7 74 26)(8 75 27)(9 76 19)(10 31 48)(11 32 49)(12 33 50)(13 34 51)(14 35 52)(15 36 53)(16 28 54)(17 29 46)(18 30 47)(37 56 69)(38 57 70)(39 58 71)(40 59 72)(41 60 64)(42 61 65)(43 62 66)(44 63 67)(45 55 68)
(2 45 34)(3 14 69)(5 39 28)(6 17 72)(8 42 31)(9 11 66)(10 27 65)(12 50 33)(13 21 68)(15 53 36)(16 24 71)(18 47 30)(19 49 62)(22 52 56)(25 46 59)(29 40 73)(32 43 76)(35 37 79)(38 57 70)(41 60 64)(44 63 67)(48 75 61)(51 78 55)(54 81 58)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 9)(2 8)(3 7)(4 6)(10 34)(11 33)(12 32)(13 31)(14 30)(15 29)(16 28)(17 36)(18 35)(19 77)(20 76)(21 75)(22 74)(23 73)(24 81)(25 80)(26 79)(27 78)(37 64)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 53)(47 52)(48 51)(49 50)(55 61)(56 60)(57 59)(62 63)
G:=sub<Sym(81)| (1,44,12)(2,45,13)(3,37,14)(4,38,15)(5,39,16)(6,40,17)(7,41,18)(8,42,10)(9,43,11)(19,66,49)(20,67,50)(21,68,51)(22,69,52)(23,70,53)(24,71,54)(25,72,46)(26,64,47)(27,65,48)(28,81,58)(29,73,59)(30,74,60)(31,75,61)(32,76,62)(33,77,63)(34,78,55)(35,79,56)(36,80,57), (1,77,20)(2,78,21)(3,79,22)(4,80,23)(5,81,24)(6,73,25)(7,74,26)(8,75,27)(9,76,19)(10,31,48)(11,32,49)(12,33,50)(13,34,51)(14,35,52)(15,36,53)(16,28,54)(17,29,46)(18,30,47)(37,56,69)(38,57,70)(39,58,71)(40,59,72)(41,60,64)(42,61,65)(43,62,66)(44,63,67)(45,55,68), (2,45,34)(3,14,69)(5,39,28)(6,17,72)(8,42,31)(9,11,66)(10,27,65)(12,50,33)(13,21,68)(15,53,36)(16,24,71)(18,47,30)(19,49,62)(22,52,56)(25,46,59)(29,40,73)(32,43,76)(35,37,79)(38,57,70)(41,60,64)(44,63,67)(48,75,61)(51,78,55)(54,81,58), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,36)(18,35)(19,77)(20,76)(21,75)(22,74)(23,73)(24,81)(25,80)(26,79)(27,78)(37,64)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,53)(47,52)(48,51)(49,50)(55,61)(56,60)(57,59)(62,63)>;
G:=Group( (1,44,12)(2,45,13)(3,37,14)(4,38,15)(5,39,16)(6,40,17)(7,41,18)(8,42,10)(9,43,11)(19,66,49)(20,67,50)(21,68,51)(22,69,52)(23,70,53)(24,71,54)(25,72,46)(26,64,47)(27,65,48)(28,81,58)(29,73,59)(30,74,60)(31,75,61)(32,76,62)(33,77,63)(34,78,55)(35,79,56)(36,80,57), (1,77,20)(2,78,21)(3,79,22)(4,80,23)(5,81,24)(6,73,25)(7,74,26)(8,75,27)(9,76,19)(10,31,48)(11,32,49)(12,33,50)(13,34,51)(14,35,52)(15,36,53)(16,28,54)(17,29,46)(18,30,47)(37,56,69)(38,57,70)(39,58,71)(40,59,72)(41,60,64)(42,61,65)(43,62,66)(44,63,67)(45,55,68), (2,45,34)(3,14,69)(5,39,28)(6,17,72)(8,42,31)(9,11,66)(10,27,65)(12,50,33)(13,21,68)(15,53,36)(16,24,71)(18,47,30)(19,49,62)(22,52,56)(25,46,59)(29,40,73)(32,43,76)(35,37,79)(38,57,70)(41,60,64)(44,63,67)(48,75,61)(51,78,55)(54,81,58), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,36)(18,35)(19,77)(20,76)(21,75)(22,74)(23,73)(24,81)(25,80)(26,79)(27,78)(37,64)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,53)(47,52)(48,51)(49,50)(55,61)(56,60)(57,59)(62,63) );
G=PermutationGroup([[(1,44,12),(2,45,13),(3,37,14),(4,38,15),(5,39,16),(6,40,17),(7,41,18),(8,42,10),(9,43,11),(19,66,49),(20,67,50),(21,68,51),(22,69,52),(23,70,53),(24,71,54),(25,72,46),(26,64,47),(27,65,48),(28,81,58),(29,73,59),(30,74,60),(31,75,61),(32,76,62),(33,77,63),(34,78,55),(35,79,56),(36,80,57)], [(1,77,20),(2,78,21),(3,79,22),(4,80,23),(5,81,24),(6,73,25),(7,74,26),(8,75,27),(9,76,19),(10,31,48),(11,32,49),(12,33,50),(13,34,51),(14,35,52),(15,36,53),(16,28,54),(17,29,46),(18,30,47),(37,56,69),(38,57,70),(39,58,71),(40,59,72),(41,60,64),(42,61,65),(43,62,66),(44,63,67),(45,55,68)], [(2,45,34),(3,14,69),(5,39,28),(6,17,72),(8,42,31),(9,11,66),(10,27,65),(12,50,33),(13,21,68),(15,53,36),(16,24,71),(18,47,30),(19,49,62),(22,52,56),(25,46,59),(29,40,73),(32,43,76),(35,37,79),(38,57,70),(41,60,64),(44,63,67),(48,75,61),(51,78,55),(54,81,58)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,9),(2,8),(3,7),(4,6),(10,34),(11,33),(12,32),(13,31),(14,30),(15,29),(16,28),(17,36),(18,35),(19,77),(20,76),(21,75),(22,74),(23,73),(24,81),(25,80),(26,79),(27,78),(37,64),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,53),(47,52),(48,51),(49,50),(55,61),(56,60),(57,59),(62,63)]])
Matrix representation of He3⋊2D9 ►in GL8(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 18 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 18 |
12 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 3 | 18 | 1 | 4 |
0 | 0 | 15 | 16 | 1 | 4 | 15 | 16 |
0 | 0 | 1 | 4 | 1 | 4 | 3 | 18 |
0 | 0 | 15 | 16 | 15 | 16 | 1 | 4 |
0 | 0 | 3 | 18 | 1 | 4 | 1 | 4 |
0 | 0 | 1 | 4 | 15 | 16 | 15 | 16 |
12 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 3 | 18 | 1 | 4 |
0 | 0 | 3 | 18 | 15 | 16 | 3 | 18 |
0 | 0 | 3 | 18 | 3 | 18 | 15 | 16 |
0 | 0 | 15 | 16 | 15 | 16 | 1 | 4 |
0 | 0 | 1 | 4 | 15 | 16 | 15 | 16 |
0 | 0 | 3 | 18 | 1 | 4 | 1 | 4 |
G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[18,18,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[12,17,0,0,0,0,0,0,2,14,0,0,0,0,0,0,0,0,1,15,1,15,3,1,0,0,4,16,4,16,18,4,0,0,3,1,1,15,1,15,0,0,18,4,4,16,4,16,0,0,1,15,3,1,1,15,0,0,4,16,18,4,4,16],[12,14,0,0,0,0,0,0,2,7,0,0,0,0,0,0,0,0,1,3,3,15,1,3,0,0,4,18,18,16,4,18,0,0,3,15,3,15,15,1,0,0,18,16,18,16,16,4,0,0,1,3,15,1,15,1,0,0,4,18,16,4,16,4] >;
He3⋊2D9 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2D_9
% in TeX
G:=Group("He3:2D9");
// GroupNames label
G:=SmallGroup(486,56);
// by ID
G=gap.SmallGroup(486,56);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,1190,224,338,8211,2169,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,c*a*c^-1=e*a*e=a*b^-1,a*d=d*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a*b^-1*c,e*c*e=a^-1*c^-1,e*d*e=d^-1>;
// generators/relations
Export