Extensions 1→N→G→Q→1 with N=C3 and Q=3- 1+2.S3

Direct product G=N×Q with N=C3 and Q=3- 1+2.S3
dρLabelID
C3×3- 1+2.S3546C3xES-(3,1).S3486,174

Semidirect products G=N:Q with N=C3 and Q=3- 1+2.S3
extensionφ:Q→Aut NdρLabelID
C3⋊(3- 1+2.S3) = (C32×C9).S3φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3:(ES-(3,1).S3)486,188

Non-split extensions G=N.Q with N=C3 and Q=3- 1+2.S3
extensionφ:Q→Aut NdρLabelID
C3.1(3- 1+2.S3) = C33.(C3⋊S3)φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3.1(ES-(3,1).S3)486,45
C3.2(3- 1+2.S3) = C3.(C33⋊S3)φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3.2(ES-(3,1).S3)486,47
C3.3(3- 1+2.S3) = C3.(He3⋊S3)φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3.3(ES-(3,1).S3)486,48
C3.4(3- 1+2.S3) = (C3×C9)⋊6D9φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3.4(ES-(3,1).S3)486,54
C3.5(3- 1+2.S3) = 3- 1+2⋊D9φ: 3- 1+2.S3/C3.He3C2 ⊆ Aut C381C3.5(ES-(3,1).S3)486,57

׿
×
𝔽