Copied to
clipboard

G = (C3×C9)⋊6D9order 486 = 2·35

6th semidirect product of C3×C9 and D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: (C3×C9)⋊6D9, C32⋊C9.12S3, C32.9(C9⋊S3), (C32×C9).12S3, C33.22(C3⋊S3), C3.4(He3⋊S3), C3.5(C322D9), C32.20He33C2, C32.22(He3⋊C2), C3.4(3- 1+2.S3), SmallGroup(486,54)

Series: Derived Chief Lower central Upper central

C1C32C32.20He3 — (C3×C9)⋊6D9
C1C3C32C33C32×C9C32.20He3 — (C3×C9)⋊6D9
C32.20He3 — (C3×C9)⋊6D9
C1

Generators and relations for (C3×C9)⋊6D9
 G = < a,b,c,d | a3=b9=c9=d2=1, ab=ba, cac-1=ab6, dad=ab3, cbc-1=ab4, dbd=ab5, dcd=c-1 >

Subgroups: 646 in 63 conjugacy classes, 17 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, C33, C3×D9, C9⋊S3, C3×C3⋊S3, C32⋊C9, C32×C9, C32⋊D9, C3×C9⋊S3, C32.20He3, (C3×C9)⋊6D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C322D9, He3⋊S3, 3- 1+2.S3, (C3×C9)⋊6D9

Character table of (C3×C9)⋊6D9

 class 123A3B3C3D3E3F3G3H6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R
 size 181222233668181666666666181818181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111-1-1111111111111111111    linear of order 2
ρ3202222222200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1222    orthogonal lifted from S3
ρ4202222222200-1-1-1-1-1-1-1-1-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ5202222222200222222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ6202222222200-1-1-1-1-1-1-1-1-1-1-1-1222-1-1-1    orthogonal lifted from S3
ρ7202-1-1-122-1-100-1-1-1222-1-1-1ζ989ζ9792ζ9594ζ9792ζ9594ζ989ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ8202-1-1-122-1-100222-1-1-1-1-1-1ζ9594ζ989ζ9792ζ9792ζ9594ζ989ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ9202-1-1-122-1-100222-1-1-1-1-1-1ζ989ζ9792ζ9594ζ9594ζ989ζ9792ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ10202-1-1-122-1-100-1-1-1-1-1-1222ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ11202-1-1-122-1-100-1-1-1-1-1-1222ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ12202-1-1-122-1-100222-1-1-1-1-1-1ζ9792ζ9594ζ989ζ989ζ9792ζ9594ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ13202-1-1-122-1-100-1-1-1222-1-1-1ζ9594ζ989ζ9792ζ989ζ9792ζ9594ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ14202-1-1-122-1-100-1-1-1222-1-1-1ζ9792ζ9594ζ989ζ9594ζ989ζ9792ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ15202-1-1-122-1-100-1-1-1-1-1-1222ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ16313333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ3ζ32000000000000000000    complex lifted from He3⋊C2
ρ173-13333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ65ζ6000000000000000000    complex lifted from He3⋊C2
ρ183-13333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ6ζ65000000000000000000    complex lifted from He3⋊C2
ρ19313333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ32ζ3000000000000000000    complex lifted from He3⋊C2
ρ2060-36-3-300000098+2ζ979492ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ949299894929000000000    orthogonal lifted from He3⋊S3
ρ2160-3-3-3600000098+2ζ979492ζ95+2ζ949299894929ζ95+2ζ94929989492998+2ζ979492989492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2260-36-3-3000000ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ94929989492998+2ζ979492000000000    orthogonal lifted from He3⋊S3
ρ2360-3-36-300000098+2ζ979492ζ95+2ζ949299894929989492998+2ζ979492ζ95+2ζ94929ζ95+2ζ94929989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2460-3-36-3000000ζ95+2ζ94929989492998+2ζ97949298+2ζ979492ζ95+2ζ949299894929989492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2560-3-3-36000000ζ95+2ζ94929989492998+2ζ979492989492998+2ζ979492ζ95+2ζ9492998+2ζ979492ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ2660-36-3-3000000989492998+2ζ979492ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from He3⋊S3
ρ2760-3-3-36000000989492998+2ζ979492ζ95+2ζ9492998+2ζ979492ζ95+2ζ949299894929ζ95+2ζ94929989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2860-3-36-3000000989492998+2ζ979492ζ95+2ζ94929ζ95+2ζ94929989492998+2ζ97949298+2ζ979492ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ29606-3-3-3-3-3-3-3+3-33+3-3/23-3-3/200000000000000000000    complex lifted from C322D9
ρ30606-3-3-3-3+3-3-3-3-33-3-3/23+3-3/200000000000000000000    complex lifted from C322D9

Smallest permutation representation of (C3×C9)⋊6D9
On 81 points
Generators in S81
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(73 76 79)(74 77 80)(75 78 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 23 69 38 75 48 35 17 63)(2 24 64 39 76 52 36 18 58)(3 25 68 40 77 47 28 10 62)(4 26 72 41 78 51 29 11 57)(5 27 67 42 79 46 30 12 61)(6 19 71 43 80 50 31 13 56)(7 20 66 44 81 54 32 14 60)(8 21 70 45 73 49 33 15 55)(9 22 65 37 74 53 34 16 59)
(1 63)(2 59)(3 55)(4 60)(5 56)(6 61)(7 57)(8 62)(9 58)(10 21)(11 20)(12 19)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(28 70)(29 66)(30 71)(31 67)(32 72)(33 68)(34 64)(35 69)(36 65)(37 52)(38 48)(39 53)(40 49)(41 54)(42 50)(43 46)(44 51)(45 47)(73 77)(74 76)(78 81)(79 80)

G:=sub<Sym(81)| (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,23,69,38,75,48,35,17,63)(2,24,64,39,76,52,36,18,58)(3,25,68,40,77,47,28,10,62)(4,26,72,41,78,51,29,11,57)(5,27,67,42,79,46,30,12,61)(6,19,71,43,80,50,31,13,56)(7,20,66,44,81,54,32,14,60)(8,21,70,45,73,49,33,15,55)(9,22,65,37,74,53,34,16,59), (1,63)(2,59)(3,55)(4,60)(5,56)(6,61)(7,57)(8,62)(9,58)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(28,70)(29,66)(30,71)(31,67)(32,72)(33,68)(34,64)(35,69)(36,65)(37,52)(38,48)(39,53)(40,49)(41,54)(42,50)(43,46)(44,51)(45,47)(73,77)(74,76)(78,81)(79,80)>;

G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,23,69,38,75,48,35,17,63)(2,24,64,39,76,52,36,18,58)(3,25,68,40,77,47,28,10,62)(4,26,72,41,78,51,29,11,57)(5,27,67,42,79,46,30,12,61)(6,19,71,43,80,50,31,13,56)(7,20,66,44,81,54,32,14,60)(8,21,70,45,73,49,33,15,55)(9,22,65,37,74,53,34,16,59), (1,63)(2,59)(3,55)(4,60)(5,56)(6,61)(7,57)(8,62)(9,58)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(28,70)(29,66)(30,71)(31,67)(32,72)(33,68)(34,64)(35,69)(36,65)(37,52)(38,48)(39,53)(40,49)(41,54)(42,50)(43,46)(44,51)(45,47)(73,77)(74,76)(78,81)(79,80) );

G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(73,76,79),(74,77,80),(75,78,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,23,69,38,75,48,35,17,63),(2,24,64,39,76,52,36,18,58),(3,25,68,40,77,47,28,10,62),(4,26,72,41,78,51,29,11,57),(5,27,67,42,79,46,30,12,61),(6,19,71,43,80,50,31,13,56),(7,20,66,44,81,54,32,14,60),(8,21,70,45,73,49,33,15,55),(9,22,65,37,74,53,34,16,59)], [(1,63),(2,59),(3,55),(4,60),(5,56),(6,61),(7,57),(8,62),(9,58),(10,21),(11,20),(12,19),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(28,70),(29,66),(30,71),(31,67),(32,72),(33,68),(34,64),(35,69),(36,65),(37,52),(38,48),(39,53),(40,49),(41,54),(42,50),(43,46),(44,51),(45,47),(73,77),(74,76),(78,81),(79,80)]])

Matrix representation of (C3×C9)⋊6D9 in GL8(𝔽19)

10000000
01000000
001810000
001800000
001801000
001800100
0001001818
001800010
,
018000000
118000000
007140000
00520000
000145700
0072121700
005000214
000140057
,
177000000
125000000
000018100
0011171800
000018010
000018001
000018000
001018000
,
125000000
177000000
0011171800
000018100
000018000
000118000
000018010
00111801818

G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,18,18,18,0,18,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0],[0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,7,5,0,7,5,0,0,0,14,2,14,2,0,14,0,0,0,0,5,12,0,0,0,0,0,0,7,17,0,0,0,0,0,0,0,0,2,5,0,0,0,0,0,0,14,7],[17,12,0,0,0,0,0,0,7,5,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,18,17,18,18,18,18,0,0,1,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[12,17,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,17,18,18,18,18,18,0,0,18,1,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,18] >;

(C3×C9)⋊6D9 in GAP, Magma, Sage, TeX

(C_3\times C_9)\rtimes_6D_9
% in TeX

G:=Group("(C3xC9):6D9");
// GroupNames label

G:=SmallGroup(486,54);
// by ID

G=gap.SmallGroup(486,54);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,223,3134,548,986,867,11344,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^9=d^2=1,a*b=b*a,c*a*c^-1=a*b^6,d*a*d=a*b^3,c*b*c^-1=a*b^4,d*b*d=a*b^5,d*c*d=c^-1>;
// generators/relations

Export

Character table of (C3×C9)⋊6D9 in TeX

׿
×
𝔽