Extensions 1→N→G→Q→1 with N=C3 and Q=C9×C3⋊S3

Direct product G=N×Q with N=C3 and Q=C9×C3⋊S3
dρLabelID
C3⋊S3×C3×C954C3:S3xC3xC9486,228

Semidirect products G=N:Q with N=C3 and Q=C9×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3⋊(C9×C3⋊S3) = C9×C33⋊C2φ: C9×C3⋊S3/C32×C9C2 ⊆ Aut C3162C3:(C9xC3:S3)486,241

Non-split extensions G=N.Q with N=C3 and Q=C9×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(C9×C3⋊S3) = C9×C9⋊S3φ: C9×C3⋊S3/C32×C9C2 ⊆ Aut C354C3.1(C9xC3:S3)486,133
C3.2(C9×C3⋊S3) = C33⋊C18φ: C9×C3⋊S3/C32×C9C2 ⊆ Aut C354C3.2(C9xC3:S3)486,136
C3.3(C9×C3⋊S3) = C9⋊(S3×C9)φ: C9×C3⋊S3/C32×C9C2 ⊆ Aut C354C3.3(C9xC3:S3)486,138
C3.4(C9×C3⋊S3) = C923S3φ: C9×C3⋊S3/C32×C9C2 ⊆ Aut C3546C3.4(C9xC3:S3)486,139
C3.5(C9×C3⋊S3) = C3⋊S3×C27central extension (φ=1)162C3.5(C9xC3:S3)486,161
C3.6(C9×C3⋊S3) = C9×He3⋊C2central stem extension (φ=1)81C3.6(C9xC3:S3)486,143
C3.7(C9×C3⋊S3) = He3.5C18central stem extension (φ=1)813C3.7(C9xC3:S3)486,164

׿
×
𝔽