Copied to
clipboard

G = He3.5C18order 486 = 2·35

The non-split extension by He3 of C18 acting via C18/C9=C2

non-abelian, supersoluble, monomial

Aliases: He3.5C18, (C3×C27)⋊8S3, C27○He32C2, C27.2(C3⋊S3), C9○He3.5C6, C32.5(S3×C9), He3⋊C2.3C9, He3.4C6.3C3, C9.7(C3×C3⋊S3), C3.7(C9×C3⋊S3), (C3×C9).26(C3×S3), SmallGroup(486,164)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.5C18
C1C3C32He3C9○He3C27○He3 — He3.5C18
He3 — He3.5C18
C1C27

Generators and relations for He3.5C18
 G = < a,b,c,d | a3=b3=c3=1, d18=b, ab=ba, cac-1=ab-1, dad-1=a-1, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 150 in 62 conjugacy classes, 22 normal (10 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C18, C3×S3, C27, C27, C3×C9, He3, 3- 1+2, C54, S3×C9, He3⋊C2, C3×C27, C27⋊C3, C9○He3, S3×C27, He3.4C6, C27○He3, He3.5C18
Quotients: C1, C2, C3, S3, C6, C9, C18, C3×S3, C3⋊S3, S3×C9, C3×C3⋊S3, C9×C3⋊S3, He3.5C18

Smallest permutation representation of He3.5C18
On 81 points
Generators in S81
(1 64 37)(2 38 65)(3 66 39)(4 40 67)(5 68 41)(6 42 69)(7 70 43)(8 44 71)(9 72 45)(10 46 73)(11 74 47)(12 48 75)(13 76 49)(14 50 77)(15 78 51)(16 52 79)(17 80 53)(18 54 81)(19 28 55)(20 56 29)(21 30 57)(22 58 31)(23 32 59)(24 60 33)(25 34 61)(26 62 35)(27 36 63)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 64)(29 47 65)(30 48 66)(31 49 67)(32 50 68)(33 51 69)(34 52 70)(35 53 71)(36 54 72)(37 55 73)(38 56 74)(39 57 75)(40 58 76)(41 59 77)(42 60 78)(43 61 79)(44 62 80)(45 63 81)
(28 46 64)(29 65 47)(30 48 66)(31 67 49)(32 50 68)(33 69 51)(34 52 70)(35 71 53)(36 54 72)(37 73 55)(38 56 74)(39 75 57)(40 58 76)(41 77 59)(42 60 78)(43 79 61)(44 62 80)(45 81 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,64,37)(2,38,65)(3,66,39)(4,40,67)(5,68,41)(6,42,69)(7,70,43)(8,44,71)(9,72,45)(10,46,73)(11,74,47)(12,48,75)(13,76,49)(14,50,77)(15,78,51)(16,52,79)(17,80,53)(18,54,81)(19,28,55)(20,56,29)(21,30,57)(22,58,31)(23,32,59)(24,60,33)(25,34,61)(26,62,35)(27,36,63), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (28,46,64)(29,65,47)(30,48,66)(31,67,49)(32,50,68)(33,69,51)(34,52,70)(35,71,53)(36,54,72)(37,73,55)(38,56,74)(39,75,57)(40,58,76)(41,77,59)(42,60,78)(43,79,61)(44,62,80)(45,81,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,64,37)(2,38,65)(3,66,39)(4,40,67)(5,68,41)(6,42,69)(7,70,43)(8,44,71)(9,72,45)(10,46,73)(11,74,47)(12,48,75)(13,76,49)(14,50,77)(15,78,51)(16,52,79)(17,80,53)(18,54,81)(19,28,55)(20,56,29)(21,30,57)(22,58,31)(23,32,59)(24,60,33)(25,34,61)(26,62,35)(27,36,63), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (28,46,64)(29,65,47)(30,48,66)(31,67,49)(32,50,68)(33,69,51)(34,52,70)(35,71,53)(36,54,72)(37,73,55)(38,56,74)(39,75,57)(40,58,76)(41,77,59)(42,60,78)(43,79,61)(44,62,80)(45,81,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,64,37),(2,38,65),(3,66,39),(4,40,67),(5,68,41),(6,42,69),(7,70,43),(8,44,71),(9,72,45),(10,46,73),(11,74,47),(12,48,75),(13,76,49),(14,50,77),(15,78,51),(16,52,79),(17,80,53),(18,54,81),(19,28,55),(20,56,29),(21,30,57),(22,58,31),(23,32,59),(24,60,33),(25,34,61),(26,62,35),(27,36,63)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,64),(29,47,65),(30,48,66),(31,49,67),(32,50,68),(33,51,69),(34,52,70),(35,53,71),(36,54,72),(37,55,73),(38,56,74),(39,57,75),(40,58,76),(41,59,77),(42,60,78),(43,61,79),(44,62,80),(45,63,81)], [(28,46,64),(29,65,47),(30,48,66),(31,67,49),(32,50,68),(33,69,51),(34,52,70),(35,71,53),(36,54,72),(37,73,55),(38,56,74),(39,75,57),(40,58,76),(41,77,59),(42,60,78),(43,79,61),(44,62,80),(45,81,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])

90 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B9A···9F9G···9N18A···18F27A···27R27S···27AP54A···54R
order12333333669···99···918···1827···2727···2754···54
size19116666991···16···69···91···16···69···9

90 irreducible representations

dim1111112223
type+++
imageC1C2C3C6C9C18S3C3×S3S3×C9He3.5C18
kernelHe3.5C18C27○He3He3.4C6C9○He3He3⋊C2He3C3×C27C3×C9C32C1
# reps112266482436

Matrix representation of He3.5C18 in GL3(𝔽109) generated by

010
001
100
,
4500
0450
0045
,
100
0630
0045
,
500
005
050
G:=sub<GL(3,GF(109))| [0,0,1,1,0,0,0,1,0],[45,0,0,0,45,0,0,0,45],[1,0,0,0,63,0,0,0,45],[5,0,0,0,0,5,0,5,0] >;

He3.5C18 in GAP, Magma, Sage, TeX

{\rm He}_3._5C_{18}
% in TeX

G:=Group("He3.5C18");
// GroupNames label

G:=SmallGroup(486,164);
// by ID

G=gap.SmallGroup(486,164);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,500,867,3244,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^18=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽