extension | φ:Q→Aut N | d | ρ | Label | ID |
C3.1(He3.4S3) = C92⋊3C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.1(He3.4S3) | 486,141 |
C3.2(He3.4S3) = He3⋊3D9 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.2(He3.4S3) | 486,142 |
C3.3(He3.4S3) = C92⋊9C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.3(He3.4S3) | 486,144 |
C3.4(He3.4S3) = C9⋊He3⋊2C2 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.4(He3.4S3) | 486,148 |
C3.5(He3.4S3) = (C32×C9)⋊C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.5(He3.4S3) | 486,151 |
C3.6(He3.4S3) = C92⋊10C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.6(He3.4S3) | 486,154 |
C3.7(He3.4S3) = C92⋊4C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.7(He3.4S3) | 486,155 |
C3.8(He3.4S3) = C92⋊5C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.8(He3.4S3) | 486,157 |
C3.9(He3.4S3) = C92⋊11C6 | φ: He3.4S3/C9○He3 → C2 ⊆ Aut C3 | 81 | | C3.9(He3.4S3) | 486,158 |
C3.10(He3.4S3) = C92⋊3S3 | central extension (φ=1) | 54 | 6 | C3.10(He3.4S3) | 486,139 |
C3.11(He3.4S3) = (C32×C9)⋊S3 | central stem extension (φ=1) | 54 | 6 | C3.11(He3.4S3) | 486,149 |
C3.12(He3.4S3) = C92⋊6S3 | central stem extension (φ=1) | 18 | 6 | C3.12(He3.4S3) | 486,153 |
C3.13(He3.4S3) = C92⋊5S3 | central stem extension (φ=1) | 54 | 6 | C3.13(He3.4S3) | 486,156 |