Extensions 1→N→G→Q→1 with N=C3 and Q=He3.4S3

Direct product G=N×Q with N=C3 and Q=He3.4S3
dρLabelID
C3×He3.4S3546C3xHe3.4S3486,234

Semidirect products G=N:Q with N=C3 and Q=He3.4S3
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.4S3) = C9○He33S3φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3:(He3.4S3)486,245

Non-split extensions G=N.Q with N=C3 and Q=He3.4S3
extensionφ:Q→Aut NdρLabelID
C3.1(He3.4S3) = C923C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.1(He3.4S3)486,141
C3.2(He3.4S3) = He33D9φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.2(He3.4S3)486,142
C3.3(He3.4S3) = C929C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.3(He3.4S3)486,144
C3.4(He3.4S3) = C9⋊He32C2φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.4(He3.4S3)486,148
C3.5(He3.4S3) = (C32×C9)⋊C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.5(He3.4S3)486,151
C3.6(He3.4S3) = C9210C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.6(He3.4S3)486,154
C3.7(He3.4S3) = C924C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.7(He3.4S3)486,155
C3.8(He3.4S3) = C925C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.8(He3.4S3)486,157
C3.9(He3.4S3) = C9211C6φ: He3.4S3/C9○He3C2 ⊆ Aut C381C3.9(He3.4S3)486,158
C3.10(He3.4S3) = C923S3central extension (φ=1)546C3.10(He3.4S3)486,139
C3.11(He3.4S3) = (C32×C9)⋊S3central stem extension (φ=1)546C3.11(He3.4S3)486,149
C3.12(He3.4S3) = C926S3central stem extension (φ=1)186C3.12(He3.4S3)486,153
C3.13(He3.4S3) = C925S3central stem extension (φ=1)546C3.13(He3.4S3)486,156

׿
×
𝔽