Copied to
clipboard

G = C5×C5⋊F5order 500 = 22·53

Direct product of C5 and C5⋊F5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C5×C5⋊F5, C533C4, C525F5, C526C20, C51(C5×F5), C5⋊D5.2C10, (C5×C5⋊D5).1C2, SmallGroup(500,43)

Series: Derived Chief Lower central Upper central

C1C52 — C5×C5⋊F5
C1C5C52C5⋊D5C5×C5⋊D5 — C5×C5⋊F5
C52 — C5×C5⋊F5
C1C5

Generators and relations for C5×C5⋊F5
 G = < a,b,c,d | a5=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3, dcd-1=c3 >

Subgroups: 288 in 60 conjugacy classes, 20 normal (8 characteristic)
C1, C2, C4, C5, C5, C5, D5, C10, C20, F5, C52, C52, C52, C5×D5, C5⋊D5, C5×F5, C5⋊F5, C53, C5×C5⋊D5, C5×C5⋊F5
Quotients: C1, C2, C4, C5, C10, C20, F5, C5×F5, C5⋊F5, C5×C5⋊F5

Smallest permutation representation of C5×C5⋊F5
On 100 points
Generators in S100
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 34 45 37 26)(2 35 41 38 27)(3 31 42 39 28)(4 32 43 40 29)(5 33 44 36 30)(6 97 25 17 14)(7 98 21 18 15)(8 99 22 19 11)(9 100 23 20 12)(10 96 24 16 13)(46 57 68 54 65)(47 58 69 55 61)(48 59 70 51 62)(49 60 66 52 63)(50 56 67 53 64)(71 79 82 90 93)(72 80 83 86 94)(73 76 84 87 95)(74 77 85 88 91)(75 78 81 89 92)
(1 40 35 30 42)(2 36 31 26 43)(3 37 32 27 44)(4 38 33 28 45)(5 39 34 29 41)(6 16 100 11 21)(7 17 96 12 22)(8 18 97 13 23)(9 19 98 14 24)(10 20 99 15 25)(46 51 56 61 66)(47 52 57 62 67)(48 53 58 63 68)(49 54 59 64 69)(50 55 60 65 70)(71 86 76 91 81)(72 87 77 92 82)(73 88 78 93 83)(74 89 79 94 84)(75 90 80 95 85)
(1 21 70 95)(2 22 66 91)(3 23 67 92)(4 24 68 93)(5 25 69 94)(6 55 80 30)(7 51 76 26)(8 52 77 27)(9 53 78 28)(10 54 79 29)(11 60 85 35)(12 56 81 31)(13 57 82 32)(14 58 83 33)(15 59 84 34)(16 65 90 40)(17 61 86 36)(18 62 87 37)(19 63 88 38)(20 64 89 39)(41 99 49 74)(42 100 50 75)(43 96 46 71)(44 97 47 72)(45 98 48 73)

G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,34,45,37,26)(2,35,41,38,27)(3,31,42,39,28)(4,32,43,40,29)(5,33,44,36,30)(6,97,25,17,14)(7,98,21,18,15)(8,99,22,19,11)(9,100,23,20,12)(10,96,24,16,13)(46,57,68,54,65)(47,58,69,55,61)(48,59,70,51,62)(49,60,66,52,63)(50,56,67,53,64)(71,79,82,90,93)(72,80,83,86,94)(73,76,84,87,95)(74,77,85,88,91)(75,78,81,89,92), (1,40,35,30,42)(2,36,31,26,43)(3,37,32,27,44)(4,38,33,28,45)(5,39,34,29,41)(6,16,100,11,21)(7,17,96,12,22)(8,18,97,13,23)(9,19,98,14,24)(10,20,99,15,25)(46,51,56,61,66)(47,52,57,62,67)(48,53,58,63,68)(49,54,59,64,69)(50,55,60,65,70)(71,86,76,91,81)(72,87,77,92,82)(73,88,78,93,83)(74,89,79,94,84)(75,90,80,95,85), (1,21,70,95)(2,22,66,91)(3,23,67,92)(4,24,68,93)(5,25,69,94)(6,55,80,30)(7,51,76,26)(8,52,77,27)(9,53,78,28)(10,54,79,29)(11,60,85,35)(12,56,81,31)(13,57,82,32)(14,58,83,33)(15,59,84,34)(16,65,90,40)(17,61,86,36)(18,62,87,37)(19,63,88,38)(20,64,89,39)(41,99,49,74)(42,100,50,75)(43,96,46,71)(44,97,47,72)(45,98,48,73)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,34,45,37,26)(2,35,41,38,27)(3,31,42,39,28)(4,32,43,40,29)(5,33,44,36,30)(6,97,25,17,14)(7,98,21,18,15)(8,99,22,19,11)(9,100,23,20,12)(10,96,24,16,13)(46,57,68,54,65)(47,58,69,55,61)(48,59,70,51,62)(49,60,66,52,63)(50,56,67,53,64)(71,79,82,90,93)(72,80,83,86,94)(73,76,84,87,95)(74,77,85,88,91)(75,78,81,89,92), (1,40,35,30,42)(2,36,31,26,43)(3,37,32,27,44)(4,38,33,28,45)(5,39,34,29,41)(6,16,100,11,21)(7,17,96,12,22)(8,18,97,13,23)(9,19,98,14,24)(10,20,99,15,25)(46,51,56,61,66)(47,52,57,62,67)(48,53,58,63,68)(49,54,59,64,69)(50,55,60,65,70)(71,86,76,91,81)(72,87,77,92,82)(73,88,78,93,83)(74,89,79,94,84)(75,90,80,95,85), (1,21,70,95)(2,22,66,91)(3,23,67,92)(4,24,68,93)(5,25,69,94)(6,55,80,30)(7,51,76,26)(8,52,77,27)(9,53,78,28)(10,54,79,29)(11,60,85,35)(12,56,81,31)(13,57,82,32)(14,58,83,33)(15,59,84,34)(16,65,90,40)(17,61,86,36)(18,62,87,37)(19,63,88,38)(20,64,89,39)(41,99,49,74)(42,100,50,75)(43,96,46,71)(44,97,47,72)(45,98,48,73) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,34,45,37,26),(2,35,41,38,27),(3,31,42,39,28),(4,32,43,40,29),(5,33,44,36,30),(6,97,25,17,14),(7,98,21,18,15),(8,99,22,19,11),(9,100,23,20,12),(10,96,24,16,13),(46,57,68,54,65),(47,58,69,55,61),(48,59,70,51,62),(49,60,66,52,63),(50,56,67,53,64),(71,79,82,90,93),(72,80,83,86,94),(73,76,84,87,95),(74,77,85,88,91),(75,78,81,89,92)], [(1,40,35,30,42),(2,36,31,26,43),(3,37,32,27,44),(4,38,33,28,45),(5,39,34,29,41),(6,16,100,11,21),(7,17,96,12,22),(8,18,97,13,23),(9,19,98,14,24),(10,20,99,15,25),(46,51,56,61,66),(47,52,57,62,67),(48,53,58,63,68),(49,54,59,64,69),(50,55,60,65,70),(71,86,76,91,81),(72,87,77,92,82),(73,88,78,93,83),(74,89,79,94,84),(75,90,80,95,85)], [(1,21,70,95),(2,22,66,91),(3,23,67,92),(4,24,68,93),(5,25,69,94),(6,55,80,30),(7,51,76,26),(8,52,77,27),(9,53,78,28),(10,54,79,29),(11,60,85,35),(12,56,81,31),(13,57,82,32),(14,58,83,33),(15,59,84,34),(16,65,90,40),(17,61,86,36),(18,62,87,37),(19,63,88,38),(20,64,89,39),(41,99,49,74),(42,100,50,75),(43,96,46,71),(44,97,47,72),(45,98,48,73)]])

50 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5AH10A10B10C10D20A···20H
order124455555···51010101020···20
size125252511114···42525252525···25

50 irreducible representations

dim11111144
type+++
imageC1C2C4C5C10C20F5C5×F5
kernelC5×C5⋊F5C5×C5⋊D5C53C5⋊F5C5⋊D5C52C52C5
# reps112448624

Matrix representation of C5×C5⋊F5 in GL8(𝔽41)

370000000
037000000
003700000
000370000
00001000
00000100
00000010
00000001
,
180000000
016000000
003700000
000100000
000010000
000003700
000000180
000000016
,
160000000
018000000
001000000
000370000
000016000
000001800
000000100
000000037
,
00100000
00010000
01000000
10000000
00000010
00000001
00000100
00001000

G:=sub<GL(8,GF(41))| [37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[18,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C5×C5⋊F5 in GAP, Magma, Sage, TeX

C_5\times C_5\rtimes F_5
% in TeX

G:=Group("C5xC5:F5");
// GroupNames label

G:=SmallGroup(500,43);
// by ID

G=gap.SmallGroup(500,43);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,803,173,5004,1014]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽