direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C5×D5, C5≀C2, AΣL1(𝔽25), C5⋊C10, C52⋊1C2, SmallGroup(50,3)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5×D5 |
Generators and relations for C5×D5
G = < a,b,c | a5=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C5×D5
class | 1 | 2 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 10A | 10B | 10C | 10D | |
size | 1 | 5 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ53 | ζ5 | ζ52 | ζ54 | ζ5 | ζ54 | ζ54 | 1 | ζ52 | ζ5 | ζ52 | ζ53 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ4 | 1 | -1 | ζ53 | ζ5 | ζ52 | ζ54 | ζ5 | ζ54 | ζ54 | 1 | ζ52 | ζ5 | ζ52 | ζ53 | ζ53 | 1 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | linear of order 10 |
ρ5 | 1 | 1 | ζ5 | ζ52 | ζ54 | ζ53 | ζ52 | ζ53 | ζ53 | 1 | ζ54 | ζ52 | ζ54 | ζ5 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ6 | 1 | 1 | ζ52 | ζ54 | ζ53 | ζ5 | ζ54 | ζ5 | ζ5 | 1 | ζ53 | ζ54 | ζ53 | ζ52 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ7 | 1 | -1 | ζ52 | ζ54 | ζ53 | ζ5 | ζ54 | ζ5 | ζ5 | 1 | ζ53 | ζ54 | ζ53 | ζ52 | ζ52 | 1 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | linear of order 10 |
ρ8 | 1 | 1 | ζ54 | ζ53 | ζ5 | ζ52 | ζ53 | ζ52 | ζ52 | 1 | ζ5 | ζ53 | ζ5 | ζ54 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ9 | 1 | -1 | ζ54 | ζ53 | ζ5 | ζ52 | ζ53 | ζ52 | ζ52 | 1 | ζ5 | ζ53 | ζ5 | ζ54 | ζ54 | 1 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | linear of order 10 |
ρ10 | 1 | -1 | ζ5 | ζ52 | ζ54 | ζ53 | ζ52 | ζ53 | ζ53 | 1 | ζ54 | ζ52 | ζ54 | ζ5 | ζ5 | 1 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | linear of order 10 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ13 | 2 | 0 | 2ζ5 | 2ζ52 | 2ζ54 | 2ζ53 | ζ53+ζ5 | ζ54+ζ52 | ζ5+1 | -1+√5/2 | ζ53+1 | ζ54+1 | ζ52+ζ5 | ζ52+1 | ζ54+ζ53 | -1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ14 | 2 | 0 | 2ζ53 | 2ζ5 | 2ζ52 | 2ζ54 | ζ54+ζ53 | ζ52+ζ5 | ζ53+1 | -1-√5/2 | ζ54+1 | ζ52+1 | ζ53+ζ5 | ζ5+1 | ζ54+ζ52 | -1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 2 | 0 | 2ζ5 | 2ζ52 | 2ζ54 | 2ζ53 | ζ54+1 | ζ5+1 | ζ54+ζ52 | -1-√5/2 | ζ52+ζ5 | ζ53+ζ5 | ζ53+1 | ζ54+ζ53 | ζ52+1 | -1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 2 | 0 | 2ζ52 | 2ζ54 | 2ζ53 | 2ζ5 | ζ52+ζ5 | ζ54+ζ53 | ζ52+1 | -1-√5/2 | ζ5+1 | ζ53+1 | ζ54+ζ52 | ζ54+1 | ζ53+ζ5 | -1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ17 | 2 | 0 | 2ζ52 | 2ζ54 | 2ζ53 | 2ζ5 | ζ53+1 | ζ52+1 | ζ54+ζ53 | -1+√5/2 | ζ54+ζ52 | ζ52+ζ5 | ζ5+1 | ζ53+ζ5 | ζ54+1 | -1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 2 | 0 | 2ζ53 | 2ζ5 | 2ζ52 | 2ζ54 | ζ52+1 | ζ53+1 | ζ52+ζ5 | -1+√5/2 | ζ53+ζ5 | ζ54+ζ53 | ζ54+1 | ζ54+ζ52 | ζ5+1 | -1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ19 | 2 | 0 | 2ζ54 | 2ζ53 | 2ζ5 | 2ζ52 | ζ54+ζ52 | ζ53+ζ5 | ζ54+1 | -1+√5/2 | ζ52+1 | ζ5+1 | ζ54+ζ53 | ζ53+1 | ζ52+ζ5 | -1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 2 | 0 | 2ζ54 | 2ζ53 | 2ζ5 | 2ζ52 | ζ5+1 | ζ54+1 | ζ53+ζ5 | -1-√5/2 | ζ54+ζ53 | ζ54+ζ52 | ζ52+1 | ζ52+ζ5 | ζ53+1 | -1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5)(6 7 8 9 10)
(1 5 4 3 2)(6 7 8 9 10)
(1 10)(2 6)(3 7)(4 8)(5 9)
G:=sub<Sym(10)| (1,2,3,4,5)(6,7,8,9,10), (1,5,4,3,2)(6,7,8,9,10), (1,10)(2,6)(3,7)(4,8)(5,9)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10), (1,5,4,3,2)(6,7,8,9,10), (1,10)(2,6)(3,7)(4,8)(5,9) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10)], [(1,5,4,3,2),(6,7,8,9,10)], [(1,10),(2,6),(3,7),(4,8),(5,9)]])
G:=TransitiveGroup(10,6);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 25 14 9 19)(2 21 15 10 20)(3 22 11 6 16)(4 23 12 7 17)(5 24 13 8 18)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 22)(7 23)(8 24)(9 25)(10 21)
G:=sub<Sym(25)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,14,9,19)(2,21,15,10,20)(3,22,11,6,16)(4,23,12,7,17)(5,24,13,8,18), (1,19)(2,20)(3,16)(4,17)(5,18)(6,22)(7,23)(8,24)(9,25)(10,21)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,14,9,19)(2,21,15,10,20)(3,22,11,6,16)(4,23,12,7,17)(5,24,13,8,18), (1,19)(2,20)(3,16)(4,17)(5,18)(6,22)(7,23)(8,24)(9,25)(10,21) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,25,14,9,19),(2,21,15,10,20),(3,22,11,6,16),(4,23,12,7,17),(5,24,13,8,18)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,22),(7,23),(8,24),(9,25),(10,21)]])
G:=TransitiveGroup(25,3);
C5×D5 is a maximal subgroup of
D5.D5 C52⋊S3 C52⋊C10 C25⋊C10 He5⋊C2
C5×D5 is a maximal quotient of C52⋊C10 C25⋊C10
action | f(x) | Disc(f) |
---|---|---|
10T6 | x10-15x8-10x7+55x6+53x5-40x4-50x3-5x2+5x+1 | 513·114·3072 |
Matrix representation of C5×D5 ►in GL2(𝔽11) generated by
4 | 0 |
0 | 4 |
5 | 0 |
0 | 9 |
0 | 9 |
5 | 0 |
G:=sub<GL(2,GF(11))| [4,0,0,4],[5,0,0,9],[0,5,9,0] >;
C5×D5 in GAP, Magma, Sage, TeX
C_5\times D_5
% in TeX
G:=Group("C5xD5");
// GroupNames label
G:=SmallGroup(50,3);
// by ID
G=gap.SmallGroup(50,3);
# by ID
G:=PCGroup([3,-2,-5,-5,362]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5×D5 in TeX
Character table of C5×D5 in TeX