Copied to
clipboard

G = C17⋊D4order 136 = 23·17

The semidirect product of C17 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C172D4, C22⋊D17, D342C2, Dic17⋊C2, C2.5D34, C34.5C22, (C2×C34)⋊2C2, SmallGroup(136,8)

Series: Derived Chief Lower central Upper central

C1C34 — C17⋊D4
C1C17C34D34 — C17⋊D4
C17C34 — C17⋊D4
C1C2C22

Generators and relations for C17⋊D4
 G = < a,b,c | a17=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

2C2
34C2
17C4
17C22
2D17
2C34
17D4

Smallest permutation representation of C17⋊D4
On 68 points
Generators in S68
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 35 24 55)(2 51 25 54)(3 50 26 53)(4 49 27 52)(5 48 28 68)(6 47 29 67)(7 46 30 66)(8 45 31 65)(9 44 32 64)(10 43 33 63)(11 42 34 62)(12 41 18 61)(13 40 19 60)(14 39 20 59)(15 38 21 58)(16 37 22 57)(17 36 23 56)
(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(31 34)(32 33)(35 55)(36 54)(37 53)(38 52)(39 68)(40 67)(41 66)(42 65)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)

G:=sub<Sym(68)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,35,24,55)(2,51,25,54)(3,50,26,53)(4,49,27,52)(5,48,28,68)(6,47,29,67)(7,46,30,66)(8,45,31,65)(9,44,32,64)(10,43,33,63)(11,42,34,62)(12,41,18,61)(13,40,19,60)(14,39,20,59)(15,38,21,58)(16,37,22,57)(17,36,23,56), (2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(31,34)(32,33)(35,55)(36,54)(37,53)(38,52)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,35,24,55)(2,51,25,54)(3,50,26,53)(4,49,27,52)(5,48,28,68)(6,47,29,67)(7,46,30,66)(8,45,31,65)(9,44,32,64)(10,43,33,63)(11,42,34,62)(12,41,18,61)(13,40,19,60)(14,39,20,59)(15,38,21,58)(16,37,22,57)(17,36,23,56), (2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(31,34)(32,33)(35,55)(36,54)(37,53)(38,52)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,35,24,55),(2,51,25,54),(3,50,26,53),(4,49,27,52),(5,48,28,68),(6,47,29,67),(7,46,30,66),(8,45,31,65),(9,44,32,64),(10,43,33,63),(11,42,34,62),(12,41,18,61),(13,40,19,60),(14,39,20,59),(15,38,21,58),(16,37,22,57),(17,36,23,56)], [(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(31,34),(32,33),(35,55),(36,54),(37,53),(38,52),(39,68),(40,67),(41,66),(42,65),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56)]])

C17⋊D4 is a maximal subgroup of
D685C2  D4×D17  D42D17  C51⋊D4  C17⋊D12  C517D4  C17⋊S4
C17⋊D4 is a maximal quotient of
C34.D4  D34⋊C4  D4⋊D17  D4.D17  Q8⋊D17  C17⋊Q16  C23.D17  C51⋊D4  C17⋊D12  C517D4

37 conjugacy classes

class 1 2A2B2C 4 17A···17H34A···34X
order1222417···1734···34
size11234342···22···2

37 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D17D34C17⋊D4
kernelC17⋊D4Dic17D34C2×C34C17C22C2C1
# reps111118816

Matrix representation of C17⋊D4 in GL2(𝔽137) generated by

01
13658
,
1028
60127
,
10
58136
G:=sub<GL(2,GF(137))| [0,136,1,58],[10,60,28,127],[1,58,0,136] >;

C17⋊D4 in GAP, Magma, Sage, TeX

C_{17}\rtimes D_4
% in TeX

G:=Group("C17:D4");
// GroupNames label

G:=SmallGroup(136,8);
// by ID

G=gap.SmallGroup(136,8);
# by ID

G:=PCGroup([4,-2,-2,-2,-17,49,2051]);
// Polycyclic

G:=Group<a,b,c|a^17=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C17⋊D4 in TeX

׿
×
𝔽