Extensions 1→N→G→Q→1 with N=M5(2) and Q=C2

Direct product G=N×Q with N=M5(2) and Q=C2
dρLabelID
C2×M5(2)32C2xM5(2)64,184

Semidirect products G=N:Q with N=M5(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M5(2)⋊1C2 = C16⋊C22φ: C2/C1C2 ⊆ Out M5(2)164+M5(2):1C264,190
M5(2)⋊2C2 = Q32⋊C2φ: C2/C1C2 ⊆ Out M5(2)324-M5(2):2C264,191
M5(2)⋊3C2 = C23.C8φ: C2/C1C2 ⊆ Out M5(2)164M5(2):3C264,30
M5(2)⋊4C2 = D4.C8φ: C2/C1C2 ⊆ Out M5(2)322M5(2):4C264,31
M5(2)⋊5C2 = D82C4φ: C2/C1C2 ⊆ Out M5(2)164M5(2):5C264,41
M5(2)⋊6C2 = M5(2)⋊C2φ: C2/C1C2 ⊆ Out M5(2)164+M5(2):6C264,42
M5(2)⋊7C2 = D4○C16φ: trivial image322M5(2):7C264,185

Non-split extensions G=N.Q with N=M5(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M5(2).1C2 = C8.Q8φ: C2/C1C2 ⊆ Out M5(2)164M5(2).1C264,46
M5(2).2C2 = C16⋊C4φ: C2/C1C2 ⊆ Out M5(2)164M5(2).2C264,28
M5(2).3C2 = C8.17D4φ: C2/C1C2 ⊆ Out M5(2)324-M5(2).3C264,43
M5(2).4C2 = C8.C8φ: C2/C1C2 ⊆ Out M5(2)162M5(2).4C264,45

׿
×
𝔽