p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.4D4, Q32⋊2C2, C4.15D8, C16.C22, SD32⋊2C2, C22.6D8, M5(2)⋊2C2, C8.11C23, D8.3C22, Q16.3C22, C4○D8.4C2, C4.12(C2×D4), C2.17(C2×D8), (C2×C4).48D4, (C2×Q16)⋊10C2, (C2×C8).24C22, 2-Sylow(ASigmaL(2,49)), SmallGroup(64,191)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q32⋊C2
G = < a,b,c | a16=c2=1, b2=a8, bab-1=a-1, cac=a9, bc=cb >
Character table of Q32⋊C2
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 2 | 2 | 8 | 8 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 19 9 27)(2 18 10 26)(3 17 11 25)(4 32 12 24)(5 31 13 23)(6 30 14 22)(7 29 15 21)(8 28 16 20)
(1 26)(2 19)(3 28)(4 21)(5 30)(6 23)(7 32)(8 25)(9 18)(10 27)(11 20)(12 29)(13 22)(14 31)(15 24)(16 17)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,19,9,27)(2,18,10,26)(3,17,11,25)(4,32,12,24)(5,31,13,23)(6,30,14,22)(7,29,15,21)(8,28,16,20), (1,26)(2,19)(3,28)(4,21)(5,30)(6,23)(7,32)(8,25)(9,18)(10,27)(11,20)(12,29)(13,22)(14,31)(15,24)(16,17)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,19,9,27)(2,18,10,26)(3,17,11,25)(4,32,12,24)(5,31,13,23)(6,30,14,22)(7,29,15,21)(8,28,16,20), (1,26)(2,19)(3,28)(4,21)(5,30)(6,23)(7,32)(8,25)(9,18)(10,27)(11,20)(12,29)(13,22)(14,31)(15,24)(16,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,19,9,27),(2,18,10,26),(3,17,11,25),(4,32,12,24),(5,31,13,23),(6,30,14,22),(7,29,15,21),(8,28,16,20)], [(1,26),(2,19),(3,28),(4,21),(5,30),(6,23),(7,32),(8,25),(9,18),(10,27),(11,20),(12,29),(13,22),(14,31),(15,24),(16,17)]])
Q32⋊C2 is a maximal subgroup of
Q32⋊C4
D8.D2p: D8.D4 D8.3D4 D8.12D4 C8.3D8 C8.5D8 SD32⋊S3 D8.9D6 SD32⋊D5 ...
D2p.D8: D4○SD32 Q8○D16 Q32⋊S3 Q32⋊D5 Q32⋊D7 ...
C8p.C23: D16⋊C22 C16.D6 C24.27C23 C16.D10 Q16.D10 C16.D14 Q16.D14 ...
Q32⋊C2 is a maximal quotient of
C23.39D8 C23.41D8 M5(2)⋊1C4 SD32⋊3C4 Q32⋊4C4 Q16⋊7D4 C16⋊2D4 D8⋊1Q8 Q16⋊Q8 Q16.Q8 C22.D16 C23.50D8 C23.20D8 C8.12SD16 C8.14SD16 C16⋊Q8
C16.D2p: C16.D4 C8.7D8 C16.D6 SD32⋊S3 Q32⋊S3 C16.D10 SD32⋊D5 Q32⋊D5 ...
D8.D2p: D8.10D4 D8.4D4 D8.9D6 C40.31C23 C56.31C23 ...
Q16.D2p: Q16.8D4 Q16.4D4 Q16.5D4 C24.27C23 Q16.D10 Q16.D14 ...
Matrix representation of Q32⋊C2 ►in GL4(𝔽7) generated by
2 | 3 | 5 | 4 |
0 | 3 | 2 | 1 |
2 | 5 | 3 | 3 |
4 | 4 | 4 | 6 |
3 | 5 | 3 | 2 |
1 | 4 | 4 | 2 |
1 | 6 | 3 | 6 |
5 | 5 | 2 | 4 |
6 | 0 | 1 | 4 |
0 | 5 | 4 | 5 |
0 | 4 | 5 | 5 |
0 | 6 | 6 | 5 |
G:=sub<GL(4,GF(7))| [2,0,2,4,3,3,5,4,5,2,3,4,4,1,3,6],[3,1,1,5,5,4,6,5,3,4,3,2,2,2,6,4],[6,0,0,0,0,5,4,6,1,4,5,6,4,5,5,5] >;
Q32⋊C2 in GAP, Magma, Sage, TeX
Q_{32}\rtimes C_2
% in TeX
G:=Group("Q32:C2");
// GroupNames label
G:=SmallGroup(64,191);
// by ID
G=gap.SmallGroup(64,191);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,121,199,650,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^16=c^2=1,b^2=a^8,b*a*b^-1=a^-1,c*a*c=a^9,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of Q32⋊C2 in TeX
Character table of Q32⋊C2 in TeX