Extensions 1→N→G→Q→1 with N=C2 and Q=C4×D4

Direct product G=N×Q with N=C2 and Q=C4×D4
dρLabelID
C2×C4×D432C2xC4xD464,196


Non-split extensions G=N.Q with N=C2 and Q=C4×D4
extensionφ:Q→Aut NdρLabelID
C2.1(C4×D4) = C4×C22⋊C4central extension (φ=1)32C2.1(C4xD4)64,58
C2.2(C4×D4) = C4×C4⋊C4central extension (φ=1)64C2.2(C4xD4)64,59
C2.3(C4×D4) = C8×D4central extension (φ=1)32C2.3(C4xD4)64,115
C2.4(C4×D4) = C23.8Q8central stem extension (φ=1)32C2.4(C4xD4)64,66
C2.5(C4×D4) = C23.23D4central stem extension (φ=1)32C2.5(C4xD4)64,67
C2.6(C4×D4) = C23.63C23central stem extension (φ=1)64C2.6(C4xD4)64,68
C2.7(C4×D4) = C24.C22central stem extension (φ=1)32C2.7(C4xD4)64,69
C2.8(C4×D4) = C23.65C23central stem extension (φ=1)64C2.8(C4xD4)64,70
C2.9(C4×D4) = C24.3C22central stem extension (φ=1)32C2.9(C4xD4)64,71
C2.10(C4×D4) = C89D4central stem extension (φ=1)32C2.10(C4xD4)64,116
C2.11(C4×D4) = C86D4central stem extension (φ=1)32C2.11(C4xD4)64,117
C2.12(C4×D4) = C4×D8central stem extension (φ=1)32C2.12(C4xD4)64,118
C2.13(C4×D4) = C4×SD16central stem extension (φ=1)32C2.13(C4xD4)64,119
C2.14(C4×D4) = C4×Q16central stem extension (φ=1)64C2.14(C4xD4)64,120
C2.15(C4×D4) = SD16⋊C4central stem extension (φ=1)32C2.15(C4xD4)64,121
C2.16(C4×D4) = Q16⋊C4central stem extension (φ=1)64C2.16(C4xD4)64,122
C2.17(C4×D4) = D8⋊C4central stem extension (φ=1)32C2.17(C4xD4)64,123
C2.18(C4×D4) = C8○D8central stem extension (φ=1)162C2.18(C4xD4)64,124
C2.19(C4×D4) = C8.26D4central stem extension (φ=1)164C2.19(C4xD4)64,125

׿
×
𝔽