Copied to
clipboard

G = C8:9D4order 64 = 26

3rd semidirect product of C8 and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C8:9D4, C22:1M4(2), C42.8C22, C4:C8:15C2, C4:C4.7C4, C8:C4:9C2, (C4xD4).2C2, (C2xD4).8C4, C2.10(C4xD4), C4.77(C2xD4), C22:C8:13C2, (C22xC8):11C2, C2.7(C8oD4), C22:C4.4C4, C4.52(C4oD4), C23.11(C2xC4), C2.9(C2xM4(2)), (C2xM4(2)):14C2, (C2xC8).100C22, (C2xC4).154C23, C22.47(C22xC4), (C22xC4).96C22, (C2xC4).36(C2xC4), SmallGroup(64,116)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C8:9D4
C1C2C4C2xC4C2xC8C22xC8 — C8:9D4
C1C22 — C8:9D4
C1C2xC4 — C8:9D4
C1C2C2C2xC4 — C8:9D4

Generators and relations for C8:9D4
 G = < a,b,c | a8=b4=c2=1, bab-1=cac=a5, cbc=b-1 >

Subgroups: 89 in 62 conjugacy classes, 37 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, D4, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C2xD4, C8:C4, C22:C8, C4:C8, C4xD4, C22xC8, C2xM4(2), C8:9D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, M4(2), C22xC4, C2xD4, C4oD4, C4xD4, C2xM4(2), C8oD4, C8:9D4

Character table of C8:9D4

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J8K8L
 size 1111224111122444222222224444
ρ11111111111111111111111111111    trivial
ρ21111-1-111111-1-1-11-1-1111-1-1-1111-1-1    linear of order 2
ρ31111-1-1-11111-1-11-111-1-1-1111-111-1-1    linear of order 2
ρ4111111-1111111-1-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ51111-1-111111-1-1-11-11-1-1-1111-1-1-111    linear of order 2
ρ61111111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ7111111-1111111-1-1-111111111-1-1-1-1    linear of order 2
ρ81111-1-1-11111-1-11-11-1111-1-1-11-1-111    linear of order 2
ρ91111-1-1-1-1-1-1-11111-1i-iii-ii-i-ii-ii-i    linear of order 4
ρ10111111-1-1-1-1-1-1-1-111ii-i-i-ii-ii-iii-i    linear of order 4
ρ11111111-1-1-1-1-1-1-1-111-i-iiii-ii-ii-i-ii    linear of order 4
ρ121111-1-1-1-1-1-1-11111-1-ii-i-ii-iii-ii-ii    linear of order 4
ρ131111111-1-1-1-1-1-11-1-1-i-iiii-ii-i-iii-i    linear of order 4
ρ141111-1-11-1-1-1-111-1-11-ii-i-ii-iiii-ii-i    linear of order 4
ρ151111-1-11-1-1-1-111-1-11i-iii-ii-i-i-ii-ii    linear of order 4
ρ161111111-1-1-1-1-1-11-1-1ii-i-i-ii-iii-i-ii    linear of order 4
ρ172-2-22000-222-2000002000-2-2200000    orthogonal lifted from D4
ρ182-2-22000-222-200000-200022-200000    orthogonal lifted from D4
ρ192-2-220002-2-2200000-2i000-2i2i2i00000    complex lifted from C4oD4
ρ202-22-2-220-2i-2i2i2i2i-2i000000000000000    complex lifted from M4(2)
ρ212-22-22-20-2i-2i2i2i-2i2i000000000000000    complex lifted from M4(2)
ρ222-22-2-2202i2i-2i-2i-2i2i000000000000000    complex lifted from M4(2)
ρ232-2-220002-2-22000002i0002i-2i-2i00000    complex lifted from C4oD4
ρ242-22-22-202i2i-2i-2i2i-2i000000000000000    complex lifted from M4(2)
ρ2522-2-20002i-2i2i-2i00000088387000850000    complex lifted from C8oD4
ρ2622-2-2000-2i2i-2i2i00000083885000870000    complex lifted from C8oD4
ρ2722-2-20002i-2i2i-2i00000085878300080000    complex lifted from C8oD4
ρ2822-2-2000-2i2i-2i2i00000087858000830000    complex lifted from C8oD4

Smallest permutation representation of C8:9D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 23 11)(2 31 24 16)(3 28 17 13)(4 25 18 10)(5 30 19 15)(6 27 20 12)(7 32 21 9)(8 29 22 14)
(2 6)(4 8)(9 32)(10 29)(11 26)(12 31)(13 28)(14 25)(15 30)(16 27)(18 22)(20 24)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,23,11)(2,31,24,16)(3,28,17,13)(4,25,18,10)(5,30,19,15)(6,27,20,12)(7,32,21,9)(8,29,22,14), (2,6)(4,8)(9,32)(10,29)(11,26)(12,31)(13,28)(14,25)(15,30)(16,27)(18,22)(20,24)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,23,11)(2,31,24,16)(3,28,17,13)(4,25,18,10)(5,30,19,15)(6,27,20,12)(7,32,21,9)(8,29,22,14), (2,6)(4,8)(9,32)(10,29)(11,26)(12,31)(13,28)(14,25)(15,30)(16,27)(18,22)(20,24) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,23,11),(2,31,24,16),(3,28,17,13),(4,25,18,10),(5,30,19,15),(6,27,20,12),(7,32,21,9),(8,29,22,14)], [(2,6),(4,8),(9,32),(10,29),(11,26),(12,31),(13,28),(14,25),(15,30),(16,27),(18,22),(20,24)]])

C8:9D4 is a maximal subgroup of
C42.290C23  C42.291C23  C42.292C23  C42.293C23  C42.294C23  C23:3M4(2)  C42.297C23  C42.298C23  C42.299C23  C42.300C23  C42.301C23  C42.698C23  C42.307C23  C42.308C23  C42.309C23  C42.310C23  D8:9D4  SD16:D4  SD16:6D4  D8:10D4  SD16:7D4  SD16:8D4  Q16:9D4  Q16:10D4  C42.41C23  C42.42C23  C42.43C23  C42.44C23  C42.45C23  C42.46C23  C42.47C23  C42.48C23  C42.49C23  C42.50C23  C42.51C23  C42.52C23  C42.53C23  C42.54C23  C42.55C23  C42.56C23  C42.57C23  C42.58C23  C42.59C23  C42.60C23  C42.61C23  C42.62C23  C42.63C23  C42.64C23  C8:S4
 D2p:M4(2): D4:6M4(2)  D4:7M4(2)  D4:8M4(2)  C8:9D12  D6:2M4(2)  D6:3M4(2)  C24:D4  C8:9D20 ...
 C2p.(C4xD4): C42.264C23  C42.265C23  C42.266C23  M4(2):22D4  D4xM4(2)  M4(2):23D4  C3:C8:26D4  C42.47D6 ...
C8:9D4 is a maximal quotient of
C8:12SD16  C8:15SD16  C8:9Q16  D4.M4(2)  Q8.M4(2)  Q8:2M4(2)  C23.21M4(2)  (C2xC8).195D4  C23.22M4(2)  C23:2M4(2)  C4:C4:3C8  (C2xC8).Q8  C22:C4:4C8  C23.9M4(2)
 D2p:M4(2): C8:9D8  D4:2M4(2)  C8:9D12  D6:2M4(2)  D6:3M4(2)  C24:D4  C8:9D20  D10:4M4(2) ...
 C42.D2p: C42.27Q8  C42.109D4  C42.47D6  C42.47D10  C42.47D14 ...
 C2p.(C4xD4): C23.36C42  C23.17C42  C4:C8:14C4  C3:C8:26D4  C24:33D4  C5:2C8:26D4  C40:32D4  C5:C8:D4 ...

Matrix representation of C8:9D4 in GL4(F17) generated by

131500
6400
0001
0040
,
1000
131600
0009
00150
,
1000
131600
0010
00016
G:=sub<GL(4,GF(17))| [13,6,0,0,15,4,0,0,0,0,0,4,0,0,1,0],[1,13,0,0,0,16,0,0,0,0,0,15,0,0,9,0],[1,13,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C8:9D4 in GAP, Magma, Sage, TeX

C_8\rtimes_9D_4
% in TeX

G:=Group("C8:9D4");
// GroupNames label

G:=SmallGroup(64,116);
// by ID

G=gap.SmallGroup(64,116);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,86,88]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=c^2=1,b*a*b^-1=c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

Export

Character table of C8:9D4 in TeX

׿
x
:
Z
F
o
wr
Q
<