Copied to
clipboard

G = C8.26D4order 64 = 26

13rd non-split extension by C8 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D8:4C4, Q16:4C4, C8.26D4, SD16:2C4, C42.12C22, M4(2).12C22, C4wrC2:6C2, C8oD4:7C2, C8.6(C2xC4), C8:C4:3C2, C4oD8.3C2, D4.4(C2xC4), C2.19(C4xD4), C4.80(C2xD4), Q8.4(C2xC4), C8.C4:4C2, (C2xC4).80C23, (C2xC8).51C22, C4.16(C22xC4), C4oD4.8C22, C22.2(C4oD4), SmallGroup(64,125)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C8.26D4
C1C2C4C2xC4C2xC8C8oD4 — C8.26D4
C1C2C4 — C8.26D4
C1C4C2xC8 — C8.26D4
C1C2C2C2xC4 — C8.26D4

Generators and relations for C8.26D4
 G = < a,b,c | a8=b4=1, c2=a2, bab-1=cac-1=a5, cbc-1=a2b-1 >

Subgroups: 77 in 52 conjugacy classes, 33 normal (17 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C4xD4, C8.26D4
2C2
4C2
4C2
2C4
2C4
2C22
2C22
4C4
2C2xC4
2D4
2C2xC4
2D4
2C2xC4
2C8
2C8
2C2xC8
2M4(2)
2M4(2)
2C2xC8

Character table of C8.26D4

 class 12A2B2C2D4A4B4C4D4E4F4G8A8B8C8D8E8F8G8H8I8J
 size 1124411244442222444444
ρ11111111111111111111111    trivial
ρ2111-111111-111-1-1-1-1-1-11-11-1    linear of order 2
ρ31111-1111-11-1-11111-1-11-11-1    linear of order 2
ρ4111-1-1111-1-1-1-1-1-1-1-1111111    linear of order 2
ρ51111-111111-11-1-1-1-1-11-1-1-11    linear of order 2
ρ6111-1-11111-1-1111111-1-11-1-1    linear of order 2
ρ711111111-111-1-1-1-1-11-1-11-1-1    linear of order 2
ρ8111-11111-1-11-11111-11-1-1-11    linear of order 2
ρ911-11-1-1-11-i-11i-iii-i-1-i-i1ii    linear of order 4
ρ1011-111-1-11i-1-1-i-iii-i1i-i-1i-i    linear of order 4
ρ1111-1-11-1-11-i1-1i-iii-i-1ii1-i-i    linear of order 4
ρ1211-1-1-1-1-11i11-i-iii-i1-ii-1-ii    linear of order 4
ρ1311-1-1-1-1-11-i11ii-i-ii1i-i-1i-i    linear of order 4
ρ1411-1-11-1-11i1-1-ii-i-ii-1-i-i1ii    linear of order 4
ρ1511-111-1-11-i-1-1ii-i-ii1-ii-1-ii    linear of order 4
ρ1611-11-1-1-11i-11-ii-i-ii-1ii1-i-i    linear of order 4
ρ1722-20022-20000-2-222000000    orthogonal lifted from D4
ρ1822-20022-2000022-2-2000000    orthogonal lifted from D4
ρ1922200-2-2-200002i-2i2i-2i000000    complex lifted from C4oD4
ρ2022200-2-2-20000-2i2i-2i2i000000    complex lifted from C4oD4
ρ214-40004i-4i000000000000000    complex faithful
ρ224-4000-4i4i000000000000000    complex faithful

Permutation representations of C8.26D4
On 16 points - transitive group 16T113
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(9 11 13 15)(10 16 14 12)
(1 15 3 9 5 11 7 13)(2 12 4 14 6 16 8 10)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,11,13,15)(10,16,14,12), (1,15,3,9,5,11,7,13)(2,12,4,14,6,16,8,10)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,11,13,15)(10,16,14,12), (1,15,3,9,5,11,7,13)(2,12,4,14,6,16,8,10) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(9,11,13,15),(10,16,14,12)], [(1,15,3,9,5,11,7,13),(2,12,4,14,6,16,8,10)]])

G:=TransitiveGroup(16,113);

C8.26D4 is a maximal subgroup of
C42.283C23  D8:11D4  D8.13D4  C8.5S4
 D8p:C4: D16:C4  D24:4C4  D24:10C4  D40:10C4  D40:16C4  Q16:F5  D56:4C4  D56:10C4 ...
 M4(2).D2p: M4(2).51D4  M4(2)oD8  M4(2).22D6  C24.54D4  M4(2).22D10  C40.50D4  M4(2).22D14  C56.50D4 ...
 C8p.(C2xC4): Q32:C4  D8:4Dic3  D8:4Dic5  D8:F5  SD16:2F5  D8:4Dic7 ...
C8.26D4 is a maximal quotient of
SD16:C8  Q16:5C8  D8:5C8  C8:9D8  C8:12SD16  C8:15SD16  C8:9Q16  C8:M4(2)  C8.M4(2)  C8:3M4(2)  D4.3C42  C8.5C42  M4(2).3Q8  C42.28Q8  SD16:2F5  Q16:F5
 M4(2).D2p: M4(2).42D4  M4(2).43D4  M4(2).24D4  M4(2).22D6  D24:10C4  C24.54D4  M4(2).22D10  D40:16C4 ...
 (CpxD8):C4: C42.116D4  D8:4Dic3  D8:4Dic5  D8:F5  D8:4Dic7 ...
 C42.D2p: C42.107D4  D24:4C4  D40:10C4  D56:4C4 ...

Matrix representation of C8.26D4 in GL4(F5) generated by

0020
0001
4000
0300
,
2000
0100
0030
0004
,
0004
0020
0400
2000
G:=sub<GL(4,GF(5))| [0,0,4,0,0,0,0,3,2,0,0,0,0,1,0,0],[2,0,0,0,0,1,0,0,0,0,3,0,0,0,0,4],[0,0,0,2,0,0,4,0,0,2,0,0,4,0,0,0] >;

C8.26D4 in GAP, Magma, Sage, TeX

C_8._{26}D_4
% in TeX

G:=Group("C8.26D4");
// GroupNames label

G:=SmallGroup(64,125);
// by ID

G=gap.SmallGroup(64,125);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,86,963,489,117,88]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=1,c^2=a^2,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=a^2*b^-1>;
// generators/relations

Export

Subgroup lattice of C8.26D4 in TeX
Character table of C8.26D4 in TeX

׿
x
:
Z
F
o
wr
Q
<