Extensions 1→N→G→Q→1 with N=C2 and Q=C41D4

Direct product G=N×Q with N=C2 and Q=C41D4
dρLabelID
C2×C41D432C2xC4:1D464,211


Non-split extensions G=N.Q with N=C2 and Q=C41D4
extensionφ:Q→Aut NdρLabelID
C2.1(C41D4) = C429C4central extension (φ=1)64C2.1(C4:1D4)64,65
C2.2(C41D4) = C24.3C22central extension (φ=1)32C2.2(C4:1D4)64,71
C2.3(C41D4) = C232D4central stem extension (φ=1)32C2.3(C4:1D4)64,73
C2.4(C41D4) = C23.4Q8central stem extension (φ=1)32C2.4(C4:1D4)64,80
C2.5(C41D4) = C85D4central stem extension (φ=1)32C2.5(C4:1D4)64,173
C2.6(C41D4) = C84D4central stem extension (φ=1)32C2.6(C4:1D4)64,174
C2.7(C41D4) = C4⋊Q16central stem extension (φ=1)64C2.7(C4:1D4)64,175
C2.8(C41D4) = C8.12D4central stem extension (φ=1)32C2.8(C4:1D4)64,176
C2.9(C41D4) = C83D4central stem extension (φ=1)32C2.9(C4:1D4)64,177
C2.10(C41D4) = C8.2D4central stem extension (φ=1)32C2.10(C4:1D4)64,178

׿
×
𝔽