Extensions 1→N→G→Q→1 with N=C2×D8 and Q=C2

Direct product G=N×Q with N=C2×D8 and Q=C2
dρLabelID
C22×D832C2^2xD864,250

Semidirect products G=N:Q with N=C2×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D8)⋊1C2 = C22⋊D8φ: C2/C1C2 ⊆ Out C2×D816(C2xD8):1C264,128
(C2×D8)⋊2C2 = D4⋊D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):2C264,130
(C2×D8)⋊3C2 = C4⋊D8φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):3C264,140
(C2×D8)⋊4C2 = C87D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):4C264,147
(C2×D8)⋊5C2 = C84D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):5C264,174
(C2×D8)⋊6C2 = C2×D16φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):6C264,186
(C2×D8)⋊7C2 = C82D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):7C264,150
(C2×D8)⋊8C2 = D4.4D4φ: C2/C1C2 ⊆ Out C2×D8164+(C2xD8):8C264,153
(C2×D8)⋊9C2 = C83D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8):9C264,177
(C2×D8)⋊10C2 = C16⋊C22φ: C2/C1C2 ⊆ Out C2×D8164+(C2xD8):10C264,190
(C2×D8)⋊11C2 = C2×C8⋊C22φ: C2/C1C2 ⊆ Out C2×D816(C2xD8):11C264,254
(C2×D8)⋊12C2 = D4○D8φ: C2/C1C2 ⊆ Out C2×D8164+(C2xD8):12C264,257
(C2×D8)⋊13C2 = C2×C4○D8φ: trivial image32(C2xD8):13C264,253

Non-split extensions G=N.Q with N=C2×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D8).1C2 = C2.D16φ: C2/C1C2 ⊆ Out C2×D832(C2xD8).1C264,38
(C2×D8).2C2 = D4.2D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8).2C264,144
(C2×D8).3C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8).3C264,176
(C2×D8).4C2 = C2×SD32φ: C2/C1C2 ⊆ Out C2×D832(C2xD8).4C264,187
(C2×D8).5C2 = M5(2)⋊C2φ: C2/C1C2 ⊆ Out C2×D8164+(C2xD8).5C264,42
(C2×D8).6C2 = D8⋊C4φ: C2/C1C2 ⊆ Out C2×D832(C2xD8).6C264,123
(C2×D8).7C2 = C4×D8φ: trivial image32(C2xD8).7C264,118

׿
×
𝔽