p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4○D8, Q8○Q16, D4.11D4, D8⋊7C22, C4.8C24, C8.3C23, Q8.11D4, Q16⋊7C22, D4.5C23, Q8.5C23, SD16⋊4C22, M4(2)⋊6C22, 2+ 1+4⋊3C2, C4○D8⋊4C2, C8○D4⋊3C2, (C2×D8)⋊12C2, C8⋊C22⋊4C2, (C2×C8)⋊4C22, C4.41(C2×D4), C4○D4⋊1C22, (C2×D4)⋊8C22, C22.5(C2×D4), (C2×C4).43C23, C2.30(C22×D4), SmallGroup(64,257)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4○D8
G = < a,b,c,d | a4=b2=d2=1, c4=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=a2c3 >
Subgroups: 237 in 134 conjugacy classes, 79 normal (9 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×D4, C4○D4, C4○D4, C4○D4, C8○D4, C2×D8, C4○D8, C8⋊C22, 2+ 1+4, D4○D8
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, D4○D8
Character table of D4○D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | orthogonal faithful |
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
G:=sub<Sym(16)| (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)>;
G:=Group( (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) );
G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]])
G:=TransitiveGroup(16,80);
D4○D8 is a maximal subgroup of
D8○SD16 D8⋊C23 Q16.A4 Q8.7S4
D8⋊D2p: D8⋊11D4 D8○D8 D8⋊13D6 D8⋊15D6 D8⋊5D6 D8⋊13D10 D8⋊15D10 D8⋊5D10 ...
D4.D4p: Q16.10D4 D8.3D4 D4○D16 D4○SD32 D4.12D12 D4.12D20 D4.12D28 ...
D4p.C23: C8.C24 D12.32C23 D20.32C23 D28.32C23 ...
D4○D8 is a maximal quotient of
2+ 1+4⋊5C4 C4○D4.8Q8 C42.275C23 C42.277C23 C42.280C23 C42.14C23 (C2×C8)⋊12D4 (C2×C8)⋊14D4 C42.20C23 C42.22C23 (C2×D4).301D4 (C2×D4).303D4 C42.352C23 C42.353C23 C42.356C23 C42.358C23 C42.366C23 M4(2)⋊4Q8 C42.387C23 C42.388C23 C42.391C23 C4.2+ 1+4 C4.142+ 1+4 C4.182+ 1+4 C42.406C23 C42.410C23 C42.423C23 C42.425C23 C4.2- 1+4 C42.26C23 C42.29C23 SD16⋊7D4 SD16⋊1D4 D4×D8 Q16⋊13D4 D4⋊7SD16 C42.462C23 C42.470C23 C42.44C23 C42.49C23 C42.53C23 C42.54C23 C42.471C23 C42.474C23 C42.482C23 D4⋊6Q16 C42.488C23 C42.490C23 C42.60C23 C42.61C23 C42.496C23 C42.498C23 C42.502C23 Q8⋊8SD16 C42.507C23 C42.511C23 C42.516C23 D8⋊6Q8 Q8×Q16 SD16⋊Q8 D8⋊5Q8 Q8⋊5D8 C42.530C23 C42.74C23 C42.533C23
D8⋊D2p: D8⋊9D4 D8⋊5D4 D8⋊12D4 D8⋊13D6 D8⋊15D6 D8⋊5D6 D8⋊13D10 D8⋊15D10 ...
M4(2)⋊D2p: M4(2)⋊16D4 M4(2)⋊11D4 D4.12D12 D4.12D20 D4.12D28 ...
C4○D4⋊D2p: C4○D4⋊D4 (C2×D4)⋊21D4 C42.18C23 D12.32C23 D20.32C23 D28.32C23 ...
Matrix representation of D4○D8 ►in GL4(𝔽7) generated by
0 | 6 | 2 | 6 |
5 | 0 | 2 | 1 |
1 | 1 | 5 | 5 |
5 | 2 | 1 | 2 |
0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 |
6 | 6 | 4 | 3 |
2 | 5 | 2 | 3 |
2 | 0 | 5 | 1 |
1 | 2 | 2 | 1 |
1 | 6 | 6 | 5 |
5 | 5 | 1 | 5 |
1 | 0 | 6 | 3 |
0 | 5 | 4 | 5 |
0 | 4 | 4 | 1 |
0 | 6 | 4 | 4 |
G:=sub<GL(4,GF(7))| [0,5,1,5,6,0,1,2,2,2,5,1,6,1,5,2],[0,2,6,2,4,0,6,5,0,0,4,2,0,0,3,3],[2,1,1,5,0,2,6,5,5,2,6,1,1,1,5,5],[1,0,0,0,0,5,4,6,6,4,4,4,3,5,1,4] >;
D4○D8 in GAP, Magma, Sage, TeX
D_4\circ D_8
% in TeX
G:=Group("D4oD8");
// GroupNames label
G:=SmallGroup(64,257);
// by ID
G=gap.SmallGroup(64,257);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,217,255,1444,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^4=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^2*c^3>;
// generators/relations
Export