Extensions 1→N→G→Q→1 with N=C2×Q16 and Q=C2

Direct product G=N×Q with N=C2×Q16 and Q=C2
dρLabelID
C22×Q1664C2^2xQ1664,252

Semidirect products G=N:Q with N=C2×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q16)⋊1C2 = C22⋊Q16φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):1C264,132
(C2×Q16)⋊2C2 = D4.7D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):2C264,133
(C2×Q16)⋊3C2 = Q8.D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):3C264,145
(C2×Q16)⋊4C2 = C8.18D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):4C264,148
(C2×Q16)⋊5C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):5C264,176
(C2×Q16)⋊6C2 = C2×SD32φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):6C264,187
(C2×Q16)⋊7C2 = C8.D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):7C264,151
(C2×Q16)⋊8C2 = D4.5D4φ: C2/C1C2 ⊆ Out C2×Q16324-(C2xQ16):8C264,154
(C2×Q16)⋊9C2 = C8.2D4φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):9C264,178
(C2×Q16)⋊10C2 = Q32⋊C2φ: C2/C1C2 ⊆ Out C2×Q16324-(C2xQ16):10C264,191
(C2×Q16)⋊11C2 = C2×C8.C22φ: C2/C1C2 ⊆ Out C2×Q1632(C2xQ16):11C264,255
(C2×Q16)⋊12C2 = Q8○D8φ: C2/C1C2 ⊆ Out C2×Q16324-(C2xQ16):12C264,259
(C2×Q16)⋊13C2 = C2×C4○D8φ: trivial image32(C2xQ16):13C264,253

Non-split extensions G=N.Q with N=C2×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q16).1C2 = C2.Q32φ: C2/C1C2 ⊆ Out C2×Q1664(C2xQ16).1C264,39
(C2×Q16).2C2 = C42Q16φ: C2/C1C2 ⊆ Out C2×Q1664(C2xQ16).2C264,143
(C2×Q16).3C2 = C4⋊Q16φ: C2/C1C2 ⊆ Out C2×Q1664(C2xQ16).3C264,175
(C2×Q16).4C2 = C2×Q32φ: C2/C1C2 ⊆ Out C2×Q1664(C2xQ16).4C264,188
(C2×Q16).5C2 = C8.17D4φ: C2/C1C2 ⊆ Out C2×Q16324-(C2xQ16).5C264,43
(C2×Q16).6C2 = Q16⋊C4φ: C2/C1C2 ⊆ Out C2×Q1664(C2xQ16).6C264,122
(C2×Q16).7C2 = C4×Q16φ: trivial image64(C2xQ16).7C264,120

׿
×
𝔽