Extensions 1→N→G→Q→1 with N=D4 and Q=D4

Direct product G=N×Q with N=D4 and Q=D4
dρLabelID
D4216D4^264,226

Semidirect products G=N:Q with N=D4 and Q=D4
extensionφ:Q→Out NdρLabelID
D41D4 = C4⋊D8φ: D4/C4C2 ⊆ Out D432D4:1D464,140
D42D4 = C22⋊D8φ: D4/C22C2 ⊆ Out D416D4:2D464,128
D43D4 = D4⋊D4φ: D4/C22C2 ⊆ Out D432D4:3D464,130
D44D4 = D44D4φ: D4/C22C2 ⊆ Out D484+D4:4D464,134
D45D4 = D45D4φ: trivial image16D4:5D464,227
D46D4 = D46D4φ: trivial image32D4:6D464,228

Non-split extensions G=N.Q with N=D4 and Q=D4
extensionφ:Q→Out NdρLabelID
D4.1D4 = D4.D4φ: D4/C4C2 ⊆ Out D432D4.1D464,142
D4.2D4 = D4.2D4φ: D4/C4C2 ⊆ Out D432D4.2D464,144
D4.3D4 = D4.3D4φ: D4/C4C2 ⊆ Out D4164D4.3D464,152
D4.4D4 = D4.4D4φ: D4/C4C2 ⊆ Out D4164+D4.4D464,153
D4.5D4 = D4.5D4φ: D4/C4C2 ⊆ Out D4324-D4.5D464,154
D4.6D4 = C22⋊SD16φ: D4/C22C2 ⊆ Out D416D4.6D464,131
D4.7D4 = D4.7D4φ: D4/C22C2 ⊆ Out D432D4.7D464,133
D4.8D4 = D4.8D4φ: D4/C22C2 ⊆ Out D4164D4.8D464,135
D4.9D4 = D4.9D4φ: D4/C22C2 ⊆ Out D4164D4.9D464,136
D4.10D4 = D4.10D4φ: D4/C22C2 ⊆ Out D4164-D4.10D464,137
D4.11D4 = D4○D8φ: trivial image164+D4.11D464,257
D4.12D4 = D4○SD16φ: trivial image164D4.12D464,258
D4.13D4 = Q8○D8φ: trivial image324-D4.13D464,259

׿
×
𝔽