Extensions 1→N→G→Q→1 with N=C4 and Q=SD16

Direct product G=N×Q with N=C4 and Q=SD16
dρLabelID
C4×SD1632C4xSD1664,119

Semidirect products G=N:Q with N=C4 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C41SD16 = C85D4φ: SD16/C8C2 ⊆ Aut C432C4:1SD1664,173
C42SD16 = D4.D4φ: SD16/D4C2 ⊆ Aut C432C4:2SD1664,142
C43SD16 = C4⋊SD16φ: SD16/Q8C2 ⊆ Aut C432C4:3SD1664,141

Non-split extensions G=N.Q with N=C4 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C4.1SD16 = C2.D16φ: SD16/C8C2 ⊆ Aut C432C4.1SD1664,38
C4.2SD16 = C2.Q32φ: SD16/C8C2 ⊆ Aut C464C4.2SD1664,39
C4.3SD16 = C4.4D8φ: SD16/C8C2 ⊆ Aut C432C4.3SD1664,167
C4.4SD16 = C4.SD16φ: SD16/C8C2 ⊆ Aut C464C4.4SD1664,168
C4.5SD16 = C83Q8φ: SD16/C8C2 ⊆ Aut C464C4.5SD1664,179
C4.6SD16 = C4.10D8φ: SD16/D4C2 ⊆ Aut C464C4.6SD1664,13
C4.7SD16 = C4.6Q16φ: SD16/D4C2 ⊆ Aut C464C4.7SD1664,14
C4.8SD16 = D82C4φ: SD16/D4C2 ⊆ Aut C4164C4.8SD1664,41
C4.9SD16 = C8.Q8φ: SD16/D4C2 ⊆ Aut C4164C4.9SD1664,46
C4.10SD16 = D42Q8φ: SD16/D4C2 ⊆ Aut C432C4.10SD1664,157
C4.11SD16 = C4.D8φ: SD16/Q8C2 ⊆ Aut C432C4.11SD1664,12
C4.12SD16 = Q8⋊Q8φ: SD16/Q8C2 ⊆ Aut C464C4.12SD1664,156
C4.13SD16 = D4⋊C8central extension (φ=1)32C4.13SD1664,6
C4.14SD16 = Q8⋊C8central extension (φ=1)64C4.14SD1664,7
C4.15SD16 = C82C8central extension (φ=1)64C4.15SD1664,15

׿
×
𝔽