direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2xC5:D4, C23:D5, C10:2D4, C22:2D10, D10:3C22, C10.10C23, Dic5:2C22, C5:3(C2xD4), (C2xC10):3C22, (C22xC10):2C2, (C2xDic5):4C2, (C22xD5):3C2, C2.10(C22xD5), SmallGroup(80,44)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC5:D4
G = < a,b,c,d | a2=b5=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 146 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, D4, C23, C23, D5, C10, C10, C10, C2xD4, Dic5, D10, D10, C2xC10, C2xC10, C2xC10, C2xDic5, C5:D4, C22xD5, C22xC10, C2xC5:D4
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C5:D4, C22xD5, C2xC5:D4
Character table of C2xC5:D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ54+ζ5 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | -1+√5/2 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | complex lifted from C5:D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ54-ζ5 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | 1-√5/2 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | complex lifted from C5:D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ53+ζ52 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | 1+√5/2 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | complex lifted from C5:D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ54+ζ5 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | 1-√5/2 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | complex lifted from C5:D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ54-ζ5 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -1+√5/2 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | complex lifted from C5:D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ53-ζ52 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | 1+√5/2 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | complex lifted from C5:D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ53+ζ52 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | -1-√5/2 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | complex lifted from C5:D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ53-ζ52 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | -1-√5/2 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | complex lifted from C5:D4 |
(1 26)(2 27)(3 28)(4 29)(5 30)(6 21)(7 22)(8 23)(9 24)(10 25)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 11 6 16)(2 15 7 20)(3 14 8 19)(4 13 9 18)(5 12 10 17)(21 31 26 36)(22 35 27 40)(23 34 28 39)(24 33 29 38)(25 32 30 37)
(2 5)(3 4)(7 10)(8 9)(11 16)(12 20)(13 19)(14 18)(15 17)(22 25)(23 24)(27 30)(28 29)(31 36)(32 40)(33 39)(34 38)(35 37)
G:=sub<Sym(40)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,11,6,16)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,31,26,36)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37), (2,5)(3,4)(7,10)(8,9)(11,16)(12,20)(13,19)(14,18)(15,17)(22,25)(23,24)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)>;
G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,11,6,16)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,31,26,36)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37), (2,5)(3,4)(7,10)(8,9)(11,16)(12,20)(13,19)(14,18)(15,17)(22,25)(23,24)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37) );
G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,21),(7,22),(8,23),(9,24),(10,25),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,11,6,16),(2,15,7,20),(3,14,8,19),(4,13,9,18),(5,12,10,17),(21,31,26,36),(22,35,27,40),(23,34,28,39),(24,33,29,38),(25,32,30,37)], [(2,5),(3,4),(7,10),(8,9),(11,16),(12,20),(13,19),(14,18),(15,17),(22,25),(23,24),(27,30),(28,29),(31,36),(32,40),(33,39),(34,38),(35,37)]])
C2xC5:D4 is a maximal subgroup of
C23.1D10 C23:F5 C23.F5 Dic5:4D4 C22:D20 D10.12D4 D10:D4 Dic5.5D4 C22.D20 C23.23D10 C20:7D4 C23:D10 C20:2D4 Dic5:D4 C20:D4 C24:2D5 C2xD4xD5 D4:6D10
C2xC5:D4 is a maximal quotient of
C20.48D4 C23.23D10 C20:7D4 D4.D10 C23.18D10 C20.17D4 C23:D10 C20:2D4 Dic5:D4 C20:D4 C20.C23 Dic5:Q8 D10:3Q8 C20.23D4 D4:D10 D4.8D10 D4.9D10 C24:2D5
Matrix representation of C2xC5:D4 ►in GL3(F41) generated by
40 | 0 | 0 |
0 | 40 | 0 |
0 | 0 | 40 |
1 | 0 | 0 |
0 | 6 | 40 |
0 | 1 | 0 |
40 | 0 | 0 |
0 | 18 | 35 |
0 | 20 | 23 |
40 | 0 | 0 |
0 | 1 | 0 |
0 | 6 | 40 |
G:=sub<GL(3,GF(41))| [40,0,0,0,40,0,0,0,40],[1,0,0,0,6,1,0,40,0],[40,0,0,0,18,20,0,35,23],[40,0,0,0,1,6,0,0,40] >;
C2xC5:D4 in GAP, Magma, Sage, TeX
C_2\times C_5\rtimes D_4
% in TeX
G:=Group("C2xC5:D4");
// GroupNames label
G:=SmallGroup(80,44);
// by ID
G=gap.SmallGroup(80,44);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,182,1604]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^5=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export