Copied to
clipboard

G = C4xC24order 96 = 25·3

Abelian group of type [4,24]

direct product, abelian, monomial, 2-elementary

Aliases: C4xC24, SmallGroup(96,46)

Series: Derived Chief Lower central Upper central

C1 — C4xC24
C1C2C22C2xC4C2xC12C2xC24 — C4xC24
C1 — C4xC24
C1 — C4xC24

Generators and relations for C4xC24
 G = < a,b | a4=b24=1, ab=ba >

Subgroups: 44, all normal (12 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, C12, C2xC6, C42, C2xC8, C24, C2xC12, C4xC8, C4xC12, C2xC24, C4xC24

Smallest permutation representation of C4xC24
Regular action on 96 points
Generators in S96
(1 41 68 80)(2 42 69 81)(3 43 70 82)(4 44 71 83)(5 45 72 84)(6 46 49 85)(7 47 50 86)(8 48 51 87)(9 25 52 88)(10 26 53 89)(11 27 54 90)(12 28 55 91)(13 29 56 92)(14 30 57 93)(15 31 58 94)(16 32 59 95)(17 33 60 96)(18 34 61 73)(19 35 62 74)(20 36 63 75)(21 37 64 76)(22 38 65 77)(23 39 66 78)(24 40 67 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,41,68,80)(2,42,69,81)(3,43,70,82)(4,44,71,83)(5,45,72,84)(6,46,49,85)(7,47,50,86)(8,48,51,87)(9,25,52,88)(10,26,53,89)(11,27,54,90)(12,28,55,91)(13,29,56,92)(14,30,57,93)(15,31,58,94)(16,32,59,95)(17,33,60,96)(18,34,61,73)(19,35,62,74)(20,36,63,75)(21,37,64,76)(22,38,65,77)(23,39,66,78)(24,40,67,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,41,68,80)(2,42,69,81)(3,43,70,82)(4,44,71,83)(5,45,72,84)(6,46,49,85)(7,47,50,86)(8,48,51,87)(9,25,52,88)(10,26,53,89)(11,27,54,90)(12,28,55,91)(13,29,56,92)(14,30,57,93)(15,31,58,94)(16,32,59,95)(17,33,60,96)(18,34,61,73)(19,35,62,74)(20,36,63,75)(21,37,64,76)(22,38,65,77)(23,39,66,78)(24,40,67,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,41,68,80),(2,42,69,81),(3,43,70,82),(4,44,71,83),(5,45,72,84),(6,46,49,85),(7,47,50,86),(8,48,51,87),(9,25,52,88),(10,26,53,89),(11,27,54,90),(12,28,55,91),(13,29,56,92),(14,30,57,93),(15,31,58,94),(16,32,59,95),(17,33,60,96),(18,34,61,73),(19,35,62,74),(20,36,63,75),(21,37,64,76),(22,38,65,77),(23,39,66,78),(24,40,67,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

C4xC24 is a maximal subgroup of
C42.279D6  C24:C8  C4.8Dic12  C24:2C8  C24:1C8  C4.17D24  C24.C8  C12:C16  C24.1C8  C24:12Q8  C24:9Q8  C12.14Q16  C24:8Q8  C24.13Q8  C42.282D6  C8:6D12  D6.C42  C42.243D6  C8:5D12  C4.5D24  C12:4D8  C8.8D12  C42.264D6  C12:4Q16  D24:11C4

96 conjugacy classes

class 1 2A2B2C3A3B4A···4L6A···6F8A···8P12A···12X24A···24AF
order1222334···46···68···812···1224···24
size1111111···11···11···11···11···1

96 irreducible representations

dim111111111111
type+++
imageC1C2C2C3C4C4C6C6C8C12C12C24
kernelC4xC24C4xC12C2xC24C4xC8C24C2xC12C42C2xC8C12C8C2xC4C4
# reps112284241616832

Matrix representation of C4xC24 in GL2(F73) generated by

460
072
,
510
021
G:=sub<GL(2,GF(73))| [46,0,0,72],[51,0,0,21] >;

C4xC24 in GAP, Magma, Sage, TeX

C_4\times C_{24}
% in TeX

G:=Group("C4xC24");
// GroupNames label

G:=SmallGroup(96,46);
// by ID

G=gap.SmallGroup(96,46);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,72,151,117]);
// Polycyclic

G:=Group<a,b|a^4=b^24=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C4xC24 in TeX

׿
x
:
Z
F
o
wr
Q
<