Copied to
clipboard

G = C7⋊S4order 168 = 23·3·7

The semidirect product of C7 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C7⋊S4, A4⋊D7, C22⋊D21, (C7×A4)⋊1C2, (C2×C14)⋊2S3, SmallGroup(168,46)

Series: Derived Chief Lower central Upper central

C1C22C7×A4 — C7⋊S4
C1C22C2×C14C7×A4 — C7⋊S4
C7×A4 — C7⋊S4
C1

Generators and relations for C7⋊S4
 G = < a,b,c,d,e | a7=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >

3C2
42C2
4C3
21C22
21C4
28S3
3C14
6D7
4C21
21D4
3D14
3Dic7
4D21
7S4
3C7⋊D4

Character table of C7⋊S4

 class 12A2B347A7B7C14A14B14C21A21B21C21D21E21F
 size 1342842222666888888
ρ111111111111111111    trivial
ρ211-11-1111111111111    linear of order 2
ρ3220-10222222-1-1-1-1-1-1    orthogonal lifted from S3
ρ422020ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ7572ζ7572ζ767ζ7473ζ7473ζ767    orthogonal lifted from D7
ρ522020ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ767ζ767ζ7473ζ7572ζ7572ζ7473    orthogonal lifted from D7
ρ622020ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ7473ζ7473ζ7572ζ767ζ767ζ7572    orthogonal lifted from D7
ρ7220-10ζ7572ζ767ζ7473ζ7572ζ767ζ74733ζ743ζ737432ζ7432ζ7374ζ3ζ753ζ727232ζ7632ζ776ζ32ζ7632ζ773ζ753ζ7275    orthogonal lifted from D21
ρ8220-10ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ3ζ753ζ72723ζ753ζ727532ζ7632ζ7763ζ743ζ737432ζ7432ζ7374ζ32ζ7632ζ77    orthogonal lifted from D21
ρ9220-10ζ7473ζ7572ζ767ζ7473ζ7572ζ76732ζ7632ζ776ζ32ζ7632ζ773ζ743ζ7374ζ3ζ753ζ72723ζ753ζ727532ζ7432ζ7374    orthogonal lifted from D21
ρ10220-10ζ7572ζ767ζ7473ζ7572ζ767ζ747332ζ7432ζ73743ζ743ζ73743ζ753ζ7275ζ32ζ7632ζ7732ζ7632ζ776ζ3ζ753ζ7272    orthogonal lifted from D21
ρ11220-10ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ32ζ7632ζ7732ζ7632ζ77632ζ7432ζ73743ζ753ζ7275ζ3ζ753ζ72723ζ743ζ7374    orthogonal lifted from D21
ρ12220-10ζ767ζ7473ζ7572ζ767ζ7473ζ75723ζ753ζ7275ζ3ζ753ζ7272ζ32ζ7632ζ7732ζ7432ζ73743ζ743ζ737432ζ7632ζ776    orthogonal lifted from D21
ρ133-110-1333-1-1-1000000    orthogonal lifted from S4
ρ143-1-101333-1-1-1000000    orthogonal lifted from S4
ρ156-200074+3ζ7375+3ζ7276+3ζ774737572767000000    orthogonal faithful
ρ166-200076+3ζ774+3ζ7375+3ζ7276774737572000000    orthogonal faithful
ρ176-200075+3ζ7276+3ζ774+3ζ7375727677473000000    orthogonal faithful

Permutation representations of C7⋊S4
On 28 points - transitive group 28T30
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 26)(16 27)(17 28)(18 22)(19 23)(20 24)(21 25)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 20)(9 21)(10 15)(11 16)(12 17)(13 18)(14 19)
(8 24 20)(9 25 21)(10 26 15)(11 27 16)(12 28 17)(13 22 18)(14 23 19)
(2 7)(3 6)(4 5)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(14 21)(22 26)(23 25)(27 28)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19), (8,24,20)(9,25,21)(10,26,15)(11,27,16)(12,28,17)(13,22,18)(14,23,19), (2,7)(3,6)(4,5)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(14,21)(22,26)(23,25)(27,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19), (8,24,20)(9,25,21)(10,26,15)(11,27,16)(12,28,17)(13,22,18)(14,23,19), (2,7)(3,6)(4,5)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(14,21)(22,26)(23,25)(27,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,26),(16,27),(17,28),(18,22),(19,23),(20,24),(21,25)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,20),(9,21),(10,15),(11,16),(12,17),(13,18),(14,19)], [(8,24,20),(9,25,21),(10,26,15),(11,27,16),(12,28,17),(13,22,18),(14,23,19)], [(2,7),(3,6),(4,5),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(14,21),(22,26),(23,25),(27,28)]])

G:=TransitiveGroup(28,30);

C7⋊S4 is a maximal subgroup of   D7×S4
C7⋊S4 is a maximal quotient of   Q8.D21  Q8⋊D21  A4⋊Dic7

Matrix representation of C7⋊S4 in GL5(𝔽337)

103274000
6340000
00100
00010
00001
,
10000
01000
00011
0003360
00110
,
10000
01000
000336336
0033601
0000336
,
3361000
3360000
003363360
00100
0033601
,
3360000
3361000
00010
00100
0000336

G:=sub<GL(5,GF(337))| [103,63,0,0,0,274,40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,336,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,336,0,0,0,336,0,0,0,0,336,1,336],[336,336,0,0,0,1,0,0,0,0,0,0,336,1,336,0,0,336,0,0,0,0,0,0,1],[336,336,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,336] >;

C7⋊S4 in GAP, Magma, Sage, TeX

C_7\rtimes S_4
% in TeX

G:=Group("C7:S4");
// GroupNames label

G:=SmallGroup(168,46);
// by ID

G=gap.SmallGroup(168,46);
# by ID

G:=PCGroup([5,-2,-3,-7,-2,2,41,542,1683,848,1054,1584]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C7⋊S4 in TeX
Character table of C7⋊S4 in TeX

׿
×
𝔽