metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D47, C47⋊C2, sometimes denoted D94 or Dih47 or Dih94, SmallGroup(94,1)
Series: Derived ►Chief ►Lower central ►Upper central
C47 — D47 |
Generators and relations for D47
G = < a,b | a47=b2=1, bab=a-1 >
Character table of D47
class | 1 | 2 | 47A | 47B | 47C | 47D | 47E | 47F | 47G | 47H | 47I | 47J | 47K | 47L | 47M | 47N | 47O | 47P | 47Q | 47R | 47S | 47T | 47U | 47V | 47W | |
size | 1 | 47 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ4725+ζ4722 | ζ4733+ζ4714 | ζ4744+ζ473 | ζ4739+ζ478 | ζ4728+ζ4719 | ζ4730+ζ4717 | ζ4741+ζ476 | ζ4742+ζ475 | ζ4731+ζ4716 | ζ4727+ζ4720 | ζ4738+ζ479 | ζ4745+ζ472 | ζ4734+ζ4713 | ζ4724+ζ4723 | ζ4735+ζ4712 | ζ4746+ζ47 | ζ4737+ζ4710 | ζ4726+ζ4721 | ζ4732+ζ4715 | ζ4743+ζ474 | ζ4740+ζ477 | ζ4729+ζ4718 | ζ4736+ζ4711 | orthogonal faithful |
ρ4 | 2 | 0 | ζ4732+ζ4715 | ζ4746+ζ47 | ζ4730+ζ4717 | ζ4733+ζ4714 | ζ4745+ζ472 | ζ4729+ζ4718 | ζ4734+ζ4713 | ζ4744+ζ473 | ζ4728+ζ4719 | ζ4735+ζ4712 | ζ4743+ζ474 | ζ4727+ζ4720 | ζ4736+ζ4711 | ζ4742+ζ475 | ζ4726+ζ4721 | ζ4737+ζ4710 | ζ4741+ζ476 | ζ4725+ζ4722 | ζ4738+ζ479 | ζ4740+ζ477 | ζ4724+ζ4723 | ζ4739+ζ478 | ζ4731+ζ4716 | orthogonal faithful |
ρ5 | 2 | 0 | ζ4734+ζ4713 | ζ4743+ζ474 | ζ4726+ζ4721 | ζ4738+ζ479 | ζ4739+ζ478 | ζ4725+ζ4722 | ζ4742+ζ475 | ζ4735+ζ4712 | ζ4729+ζ4718 | ζ4746+ζ47 | ζ4731+ζ4716 | ζ4733+ζ4714 | ζ4744+ζ473 | ζ4727+ζ4720 | ζ4737+ζ4710 | ζ4740+ζ477 | ζ4724+ζ4723 | ζ4741+ζ476 | ζ4736+ζ4711 | ζ4728+ζ4719 | ζ4745+ζ472 | ζ4732+ζ4715 | ζ4730+ζ4717 | orthogonal faithful |
ρ6 | 2 | 0 | ζ4745+ζ472 | ζ4744+ζ473 | ζ4743+ζ474 | ζ4742+ζ475 | ζ4741+ζ476 | ζ4740+ζ477 | ζ4739+ζ478 | ζ4738+ζ479 | ζ4737+ζ4710 | ζ4736+ζ4711 | ζ4735+ζ4712 | ζ4734+ζ4713 | ζ4733+ζ4714 | ζ4732+ζ4715 | ζ4731+ζ4716 | ζ4730+ζ4717 | ζ4729+ζ4718 | ζ4728+ζ4719 | ζ4727+ζ4720 | ζ4726+ζ4721 | ζ4725+ζ4722 | ζ4724+ζ4723 | ζ4746+ζ47 | orthogonal faithful |
ρ7 | 2 | 0 | ζ4735+ζ4712 | ζ4729+ζ4718 | ζ4724+ζ4723 | ζ4730+ζ4717 | ζ4736+ζ4711 | ζ4742+ζ475 | ζ4746+ζ47 | ζ4740+ζ477 | ζ4734+ζ4713 | ζ4728+ζ4719 | ζ4725+ζ4722 | ζ4731+ζ4716 | ζ4737+ζ4710 | ζ4743+ζ474 | ζ4745+ζ472 | ζ4739+ζ478 | ζ4733+ζ4714 | ζ4727+ζ4720 | ζ4726+ζ4721 | ζ4732+ζ4715 | ζ4738+ζ479 | ζ4744+ζ473 | ζ4741+ζ476 | orthogonal faithful |
ρ8 | 2 | 0 | ζ4741+ζ476 | ζ4738+ζ479 | ζ4735+ζ4712 | ζ4732+ζ4715 | ζ4729+ζ4718 | ζ4726+ζ4721 | ζ4724+ζ4723 | ζ4727+ζ4720 | ζ4730+ζ4717 | ζ4733+ζ4714 | ζ4736+ζ4711 | ζ4739+ζ478 | ζ4742+ζ475 | ζ4745+ζ472 | ζ4746+ζ47 | ζ4743+ζ474 | ζ4740+ζ477 | ζ4737+ζ4710 | ζ4734+ζ4713 | ζ4731+ζ4716 | ζ4728+ζ4719 | ζ4725+ζ4722 | ζ4744+ζ473 | orthogonal faithful |
ρ9 | 2 | 0 | ζ4739+ζ478 | ζ4735+ζ4712 | ζ4731+ζ4716 | ζ4727+ζ4720 | ζ4724+ζ4723 | ζ4728+ζ4719 | ζ4732+ζ4715 | ζ4736+ζ4711 | ζ4740+ζ477 | ζ4744+ζ473 | ζ4746+ζ47 | ζ4742+ζ475 | ζ4738+ζ479 | ζ4734+ζ4713 | ζ4730+ζ4717 | ζ4726+ζ4721 | ζ4725+ζ4722 | ζ4729+ζ4718 | ζ4733+ζ4714 | ζ4737+ζ4710 | ζ4741+ζ476 | ζ4745+ζ472 | ζ4743+ζ474 | orthogonal faithful |
ρ10 | 2 | 0 | ζ4746+ζ47 | ζ4725+ζ4722 | ζ4745+ζ472 | ζ4726+ζ4721 | ζ4744+ζ473 | ζ4727+ζ4720 | ζ4743+ζ474 | ζ4728+ζ4719 | ζ4742+ζ475 | ζ4729+ζ4718 | ζ4741+ζ476 | ζ4730+ζ4717 | ζ4740+ζ477 | ζ4731+ζ4716 | ζ4739+ζ478 | ζ4732+ζ4715 | ζ4738+ζ479 | ζ4733+ζ4714 | ζ4737+ζ4710 | ζ4734+ζ4713 | ζ4736+ζ4711 | ζ4735+ζ4712 | ζ4724+ζ4723 | orthogonal faithful |
ρ11 | 2 | 0 | ζ4736+ζ4711 | ζ4740+ζ477 | ζ4725+ζ4722 | ζ4743+ζ474 | ζ4733+ζ4714 | ζ4732+ζ4715 | ζ4744+ζ473 | ζ4726+ζ4721 | ζ4739+ζ478 | ζ4737+ζ4710 | ζ4728+ζ4719 | ζ4746+ζ47 | ζ4730+ζ4717 | ζ4735+ζ4712 | ζ4741+ζ476 | ζ4724+ζ4723 | ζ4742+ζ475 | ζ4734+ζ4713 | ζ4731+ζ4716 | ζ4745+ζ472 | ζ4727+ζ4720 | ζ4738+ζ479 | ζ4729+ζ4718 | orthogonal faithful |
ρ12 | 2 | 0 | ζ4729+ζ4718 | ζ4727+ζ4720 | ζ4736+ζ4711 | ζ4745+ζ472 | ζ4740+ζ477 | ζ4731+ζ4716 | ζ4725+ζ4722 | ζ4734+ζ4713 | ζ4743+ζ474 | ζ4742+ζ475 | ζ4733+ζ4714 | ζ4724+ζ4723 | ζ4732+ζ4715 | ζ4741+ζ476 | ζ4744+ζ473 | ζ4735+ζ4712 | ζ4726+ζ4721 | ζ4730+ζ4717 | ζ4739+ζ478 | ζ4746+ζ47 | ζ4737+ζ4710 | ζ4728+ζ4719 | ζ4738+ζ479 | orthogonal faithful |
ρ13 | 2 | 0 | ζ4724+ζ4723 | ζ4736+ζ4711 | ζ4746+ζ47 | ζ4734+ζ4713 | ζ4725+ζ4722 | ζ4737+ζ4710 | ζ4745+ζ472 | ζ4733+ζ4714 | ζ4726+ζ4721 | ζ4738+ζ479 | ζ4744+ζ473 | ζ4732+ζ4715 | ζ4727+ζ4720 | ζ4739+ζ478 | ζ4743+ζ474 | ζ4731+ζ4716 | ζ4728+ζ4719 | ζ4740+ζ477 | ζ4742+ζ475 | ζ4730+ζ4717 | ζ4729+ζ4718 | ζ4741+ζ476 | ζ4735+ζ4712 | orthogonal faithful |
ρ14 | 2 | 0 | ζ4737+ζ4710 | ζ4732+ζ4715 | ζ4727+ζ4720 | ζ4725+ζ4722 | ζ4730+ζ4717 | ζ4735+ζ4712 | ζ4740+ζ477 | ζ4745+ζ472 | ζ4744+ζ473 | ζ4739+ζ478 | ζ4734+ζ4713 | ζ4729+ζ4718 | ζ4724+ζ4723 | ζ4728+ζ4719 | ζ4733+ζ4714 | ζ4738+ζ479 | ζ4743+ζ474 | ζ4746+ζ47 | ζ4741+ζ476 | ζ4736+ζ4711 | ζ4731+ζ4716 | ζ4726+ζ4721 | ζ4742+ζ475 | orthogonal faithful |
ρ15 | 2 | 0 | ζ4742+ζ475 | ζ4731+ζ4716 | ζ4737+ζ4710 | ζ4736+ζ4711 | ζ4732+ζ4715 | ζ4741+ζ476 | ζ4727+ζ4720 | ζ4746+ζ47 | ζ4725+ζ4722 | ζ4743+ζ474 | ζ4730+ζ4717 | ζ4738+ζ479 | ζ4735+ζ4712 | ζ4733+ζ4714 | ζ4740+ζ477 | ζ4728+ζ4719 | ζ4745+ζ472 | ζ4724+ζ4723 | ζ4744+ζ473 | ζ4729+ζ4718 | ζ4739+ζ478 | ζ4734+ζ4713 | ζ4726+ζ4721 | orthogonal faithful |
ρ16 | 2 | 0 | ζ4727+ζ4720 | ζ4730+ζ4717 | ζ4740+ζ477 | ζ4744+ζ473 | ζ4734+ζ4713 | ζ4724+ζ4723 | ζ4733+ζ4714 | ζ4743+ζ474 | ζ4741+ζ476 | ζ4731+ζ4716 | ζ4726+ζ4721 | ζ4736+ζ4711 | ζ4746+ζ47 | ζ4738+ζ479 | ζ4728+ζ4719 | ζ4729+ζ4718 | ζ4739+ζ478 | ζ4745+ζ472 | ζ4735+ζ4712 | ζ4725+ζ4722 | ζ4732+ζ4715 | ζ4742+ζ475 | ζ4737+ζ4710 | orthogonal faithful |
ρ17 | 2 | 0 | ζ4726+ζ4721 | ζ4739+ζ478 | ζ4742+ζ475 | ζ4729+ζ4718 | ζ4731+ζ4716 | ζ4744+ζ473 | ζ4737+ζ4710 | ζ4724+ζ4723 | ζ4736+ζ4711 | ζ4745+ζ472 | ζ4732+ζ4715 | ζ4728+ζ4719 | ζ4741+ζ476 | ζ4740+ζ477 | ζ4727+ζ4720 | ζ4733+ζ4714 | ζ4746+ζ47 | ζ4735+ζ4712 | ζ4725+ζ4722 | ζ4738+ζ479 | ζ4743+ζ474 | ζ4730+ζ4717 | ζ4734+ζ4713 | orthogonal faithful |
ρ18 | 2 | 0 | ζ4730+ζ4717 | ζ4745+ζ472 | ζ4734+ζ4713 | ζ4728+ζ4719 | ζ4743+ζ474 | ζ4736+ζ4711 | ζ4726+ζ4721 | ζ4741+ζ476 | ζ4738+ζ479 | ζ4724+ζ4723 | ζ4739+ζ478 | ζ4740+ζ477 | ζ4725+ζ4722 | ζ4737+ζ4710 | ζ4742+ζ475 | ζ4727+ζ4720 | ζ4735+ζ4712 | ζ4744+ζ473 | ζ4729+ζ4718 | ζ4733+ζ4714 | ζ4746+ζ47 | ζ4731+ζ4716 | ζ4732+ζ4715 | orthogonal faithful |
ρ19 | 2 | 0 | ζ4738+ζ479 | ζ4737+ζ4710 | ζ4729+ζ4718 | ζ4746+ζ47 | ζ4727+ζ4720 | ζ4739+ζ478 | ζ4736+ζ4711 | ζ4730+ζ4717 | ζ4745+ζ472 | ζ4726+ζ4721 | ζ4740+ζ477 | ζ4735+ζ4712 | ζ4731+ζ4716 | ζ4744+ζ473 | ζ4725+ζ4722 | ζ4741+ζ476 | ζ4734+ζ4713 | ζ4732+ζ4715 | ζ4743+ζ474 | ζ4724+ζ4723 | ζ4742+ζ475 | ζ4733+ζ4714 | ζ4728+ζ4719 | orthogonal faithful |
ρ20 | 2 | 0 | ζ4728+ζ4719 | ζ4742+ζ475 | ζ4738+ζ479 | ζ4724+ζ4723 | ζ4737+ζ4710 | ζ4743+ζ474 | ζ4729+ζ4718 | ζ4732+ζ4715 | ζ4746+ζ47 | ζ4734+ζ4713 | ζ4727+ζ4720 | ζ4741+ζ476 | ζ4739+ζ478 | ζ4725+ζ4722 | ζ4736+ζ4711 | ζ4744+ζ473 | ζ4730+ζ4717 | ζ4731+ζ4716 | ζ4745+ζ472 | ζ4735+ζ4712 | ζ4726+ζ4721 | ζ4740+ζ477 | ζ4733+ζ4714 | orthogonal faithful |
ρ21 | 2 | 0 | ζ4744+ζ473 | ζ4728+ζ4719 | ζ4741+ζ476 | ζ4731+ζ4716 | ζ4738+ζ479 | ζ4734+ζ4713 | ζ4735+ζ4712 | ζ4737+ζ4710 | ζ4732+ζ4715 | ζ4740+ζ477 | ζ4729+ζ4718 | ζ4743+ζ474 | ζ4726+ζ4721 | ζ4746+ζ47 | ζ4724+ζ4723 | ζ4745+ζ472 | ζ4727+ζ4720 | ζ4742+ζ475 | ζ4730+ζ4717 | ζ4739+ζ478 | ζ4733+ζ4714 | ζ4736+ζ4711 | ζ4725+ζ4722 | orthogonal faithful |
ρ22 | 2 | 0 | ζ4743+ζ474 | ζ4741+ζ476 | ζ4739+ζ478 | ζ4737+ζ4710 | ζ4735+ζ4712 | ζ4733+ζ4714 | ζ4731+ζ4716 | ζ4729+ζ4718 | ζ4727+ζ4720 | ζ4725+ζ4722 | ζ4724+ζ4723 | ζ4726+ζ4721 | ζ4728+ζ4719 | ζ4730+ζ4717 | ζ4732+ζ4715 | ζ4734+ζ4713 | ζ4736+ζ4711 | ζ4738+ζ479 | ζ4740+ζ477 | ζ4742+ζ475 | ζ4744+ζ473 | ζ4746+ζ47 | ζ4745+ζ472 | orthogonal faithful |
ρ23 | 2 | 0 | ζ4731+ζ4716 | ζ4724+ζ4723 | ζ4732+ζ4715 | ζ4740+ζ477 | ζ4746+ζ47 | ζ4738+ζ479 | ζ4730+ζ4717 | ζ4725+ζ4722 | ζ4733+ζ4714 | ζ4741+ζ476 | ζ4745+ζ472 | ζ4737+ζ4710 | ζ4729+ζ4718 | ζ4726+ζ4721 | ζ4734+ζ4713 | ζ4742+ζ475 | ζ4744+ζ473 | ζ4736+ζ4711 | ζ4728+ζ4719 | ζ4727+ζ4720 | ζ4735+ζ4712 | ζ4743+ζ474 | ζ4739+ζ478 | orthogonal faithful |
ρ24 | 2 | 0 | ζ4733+ζ4714 | ζ4726+ζ4721 | ζ4728+ζ4719 | ζ4735+ζ4712 | ζ4742+ζ475 | ζ4745+ζ472 | ζ4738+ζ479 | ζ4731+ζ4716 | ζ4724+ζ4723 | ζ4730+ζ4717 | ζ4737+ζ4710 | ζ4744+ζ473 | ζ4743+ζ474 | ζ4736+ζ4711 | ζ4729+ζ4718 | ζ4725+ζ4722 | ζ4732+ζ4715 | ζ4739+ζ478 | ζ4746+ζ47 | ζ4741+ζ476 | ζ4734+ζ4713 | ζ4727+ζ4720 | ζ4740+ζ477 | orthogonal faithful |
ρ25 | 2 | 0 | ζ4740+ζ477 | ζ4734+ζ4713 | ζ4733+ζ4714 | ζ4741+ζ476 | ζ4726+ζ4721 | ζ4746+ζ47 | ζ4728+ζ4719 | ζ4739+ζ478 | ζ4735+ζ4712 | ζ4732+ζ4715 | ζ4742+ζ475 | ζ4725+ζ4722 | ζ4745+ζ472 | ζ4729+ζ4718 | ζ4738+ζ479 | ζ4736+ζ4711 | ζ4731+ζ4716 | ζ4743+ζ474 | ζ4724+ζ4723 | ζ4744+ζ473 | ζ4730+ζ4717 | ζ4737+ζ4710 | ζ4727+ζ4720 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 40)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)
G:=sub<Sym(47)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,40),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25)]])
D47 is a maximal subgroup of
D141 D235
D47 is a maximal quotient of Dic47 D141 D235
Matrix representation of D47 ►in GL2(𝔽283) generated by
27 | 282 |
1 | 0 |
27 | 282 |
162 | 256 |
G:=sub<GL(2,GF(283))| [27,1,282,0],[27,162,282,256] >;
D47 in GAP, Magma, Sage, TeX
D_{47}
% in TeX
G:=Group("D47");
// GroupNames label
G:=SmallGroup(94,1);
// by ID
G=gap.SmallGroup(94,1);
# by ID
G:=PCGroup([2,-2,-47,369]);
// Polycyclic
G:=Group<a,b|a^47=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D47 in TeX
Character table of D47 in TeX